
Frame work Programmable Platform
for the Advanced Software

Development Workstation

Framework Processor Design
Document

Preface

This research was conducted under auspices of the Research Institute for

Computing and Information Systems by Dr. Richard J. Mayer, Thomas M. Blinn,

Dr. Paula S.D. Mayer, Keith A. Ackley, Wes Crump and Les Sanders of

Knowledge Based Systems, Inc. Dr. Charles McKay served as RICIS research
coordinator.

Funding has been provided by Information Technology Division, Information

Systems Directorate, NASA/JSC through Cooperative Agreement NCC 9-16 between

NASA Johnson Space Center and the University of Houston-Clear Lake. The NASA

technical monitor for this activity was Ernest M. Fridge, of the Software Technology

Branch, Information Technology Division, Information Systems Directorate,
NASA/JSC.

The views and conclusions contained in this report are those of the authors

and should not be interpreted as representative of the official policies, either express

or implied, of NASA or the United States Government.

Framework Programmable Platform for the

Advanced Software Development Workstation (FPP/ASDW)

Framework Processor Design Document

Produced For:

Software Technology Branch
NASA Johnson Space Center

Houston, TX 77058

Authors:

Dr. Richard J. Mayer
Thomas M. Blinn

Dr. Paula S.D. Mayer
Keith A. Ackley

Wes Crump
Les Sanders

Knowledge Based Systems, Inc.
2746 Longmire Drive

College Station, TX 77845-5424
(409) 696-7979

September 20, 1991

Table of Contents

1

2

3

4

Introduction .. 1
1.1 Motivations for the FPP ... 1

1.2 Scope of this Document .. 2
1.3 The Design Approach ... 3
1.4 Document Organization .. 3

Framework Processor Concept:L_ 5
2.1 The Development Framework .. 5

2.1.1 Situation Classification Framework 5

2.1.2 System Development Framework 8
2.1.3 The Combined Framework 9
2.1.4 The Framework Cell Definition Process 11

2.2 Framework Processor Architecture 12
2.2.1 Framework Processor Conceptual Architecture 13
2.2.2 Framework Processor Functional Architecture 14

Framework Definition .. 19
3.1 Definition Component ... 20

3.1.1 User Roles .. 21
3.1.2 Artifacts ... 21
3.1.3 Tools .. 22
3.1.4 Methods ... 22
3.1.5 Relations .. 23
3.1.6 Users ... 24

3.1.7 Projects .. 24
3.2 Process Specification Component 25

3.2.1 Process Flow Descriptions 26
3.2.1.1 IDEF3 Overview ... 27
3.2.1.2 Framework Definition in IDEF3 30

3.2.2 Situation Classification Matrix 37

Framework Processing Functionality 39
4.1 Constraint Propagation ... 39

4.1.1 Constraint Propagator Overview 40
4.1.2 Constraint Relation Types 41

4.1.2.1 Logical Relations .. 41
4.1.2.2 Triggering Relations 42
4.1.2.3 User-defined Relations 44

4.2 Framework Validation .. 45

4.2.1 IDEF3 Syntax Validation .. 45
4.2.2 Framework Semantic Validation 46

4.2.2.1 Instantiation Validation 46
4.2.2.2 Simulation Validation 47

5

6

A

B

4.3

4.4

4.5

4.6

Constraint Generation .. 48

4.3.1 Trigger/Link Constraints 49
4.3.1.1 Basic Links .. 50

4.3.1.2 Fan-in Links .. 51

4.3.1.3 Fan-out Links .. 52

4.3.2 Box constraints ... 53

4.3.2.1 UOBs .. 54

4.3.2.2 Junctions .. 54

Fact Base Management ... 55

Development Process Control ... 56

Session Management .. 59

4.6.1 Project Team Members .. 59

4.6.1.1 Logging Into the Framework Processor 59

4.6.1.2 Project Visualization 60

4.6.2 Project Managers .. 63
4.6.3 Framework Administrators 64

Status and Future Direction_ 65
5.1 Framework Processor and the FPP 65

5.2 Requirements Matrix .. 68

5.3 Open Issues ... 68
5.4 Future Directions ... 71

Appendix A - Acronyms .. 75

Appendix B - Framework Definition Grammar

Specification .. 77

ii

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

List of Figures

1. The Zachman Framework ... 6

2. Development Process Situation Types 7
3. Precedence Relationships Between Development

Situations .. 8

4. The FPP Framework ... 10

5. Initial Framework Processor / Platform Relationship 13

6. A More Detailed View of the Initial Relationship 13

7. The Generalized Relationship .. 14
8. Framework Processor Architecture 15

9. Framework Manager Operation ... 16
10. The Framework Translated to IDEF3 19

11. Development Framework Representation 26

12. An Example Process Flow Diagram 28
13. An Elaboration of a UOB .. 28

14. IDEF3 Link Types ... 29
15. IDEF3 Junctions .. 29

16. Atomic and Compound UOBs .. 32

17. Example Elaboration ... 37

18. Interaction of the Framework Manager and the

Constraint Propagator .. 40

19. Example of a Select Relation .. 43

20. Categories of Links ... 49

21. Example of a Basic Link .. 50

22. Multiple Entering Basic Links ... 51

23. Example of a Fan-in Link .. 51
24. Example of a Fan-out Link ... 53

25. Development Process Control ... 57

26. Loop Back Retractions ... 58
27. Interface for the Situation Classification Framework 61

28. Interface for the System Development Framework
29. FPP Architecture ... 66

30. Framework Processor Requirements Matrix

31. Framework Processor Requirements Matrix
(continued) .. 70

iii

List of Tables

Table 1.
Table 2.

Interpretation of Start/Done Relations 42
Example of an Event Notification .. 57

iv

- 1

1 Introduction

In this document, the design of the Framework Processor (FP) component

of the Framework Programmable Software Development Platform (FPP) is

described. The FPP is a project aimed at combining effective tool and data

integration mechanisms with a model of the software development process

in an intelligent integrated software development environment. Guided by

the model, this Framework Processor will take advantage of an integrated

operating environment to provide automated support for the management

and control of the software development process so that costly mistakes

during the development phase can be eliminated. This Platform is being

developed under the Advanced Software Development Workstation (ASDW)

Program sponsored by the Software Technology Branch at the NASA

Johnson Space Center. The ASDW program is conducting research into

development of advanced technologies for Computer Aided Software
Engineering (CASE).

1.1 Motivations for the FPP

The FPP was conceived in response to the difficulties associated with

producing software systems. With the advent of more powerful and more

economical computer hardware resources, the complexity of software

systems has increased dramatically. As computer systems become more

complicated, ensuring that systems are consistently produced on time and

within budget, while ensuring that the system built is reliable and

maintainable, requires considerable management effort.

The large size of today's software systems makes it difficult for one person

to fully understand the requirements, produce the design, and develop the

system. Instead, the system development process must be executed by a

team of managers and software engineers. Tasks within the development

can occur concurrently except where certain tasks depend on information

produced by others. These interrelationships make the management of the

development process very complex. Regardless of how well a development

project may be planned out, without some form of control over the actions of

the development team costly mistakes and setbacks will occur during

development. This is particularly true in multi-year projects that suffer

from management and technical team leadership turnover.

Computer Aided Software Engineering (CASE) tools assist project

managers in both monitoring the progress of the development activities and

in capturing the experiences of the development team. However, existing

CASE tools fail to cover the entire software development process and

concentrate instead on a particular aspect of the development process (i.e.,

project management, requirements analysis, code development and
debugging). The result has usually been to use a piecemeal collection of

various CASE tools that addresses only portions of the software

development process.

Framework Processor Design Introduction

2

It is observed that most CASE tools are useful within a specified area of the

system development process. A persistent problem, however, is in using

these tools in an organized fashion so as to fully automate the system

development process. Incompatible data formats along with the misuse of

tools make interaction among these different tools very difficult. As a

result, CASE environments that effectively automate the software

engineering process have yet to be developed.

The recognition of these difficulties has spurred the development of the

FPP. The focus of the FPP is the management, control, and integration of

the software system development process. The major objectives in this

definition of the FPP have been to provide:

1)

2)

3)

4)

a realistic integration strategy that supports function and

data integration of a suite of tools (distributed and

covering the entire life cycle);

integrated access to and update of life cycle artifact data;

control of life cycle activities and data evolution; and

a site-specific development process support environment

enforcing the rules and preferred methods of the

organization.

The FPP is also expected to provide these capabilities in a distributed,
heterogeneous computing environment. Developing a platform that meets

these objectives will result in (1) a reduction in the time required to produce

software systems, (2) an increase in the quality of the resulting software

systems, (3) a decrease in the maintenance effort for the resulting software

systems, and (4) an increase in the consistency in the development process

by which software systems are constructed.

1.2 Scope of this Document

Prior to the work presented in this document, work performed by KBSI

related to the FPP focused on defining how the FPP should operate at a

conceptual level and then reducing those concepts to functional

requirements. As the conceptual design and requirements definition have

been completed ([FPP 90a], [FPP 90b]), the FPP project is now well into the

design phase of the project. During this design phase the focus is on the

definition of how operations and capabilities identified in the Concept
Document are to be provided by components of the FPP.

The focus of this document is the Framework Processor (FP) component of

the FPP. This component is responsible for capturing and processing a
description of an organization's software system development process and

for using that description to provide automated support for the control and

management of that development process. It is through this process

description and the Framework Processor that the FPP gains its

programmability. The framework (process) definition can be modified to

Introduction Framework Processor Design

- 3

reflect new knowledge about the development process or changes in the

process and those changes will be incorporated into the development
environment.

A description of the mechanisms by which the Framework Processor will

represent, manage, and use the framework process description to control

and manage the software development process will be detailed in this

document. Also detailed in these descriptions will be the means by which
the Framework Processor will interact with elements of the FPP software

integration platform (i.e., the remaining elements of the FPP) as well as
how the Framework Processor could interface with other integration

environments.

1.3 The Design Approach

As the FPP is a large system whose design involves many issues

concerning integration and the development process, an iterative design

approach is being used. This iterative approach will allow the design team
to examine particular aspects of the FPP while making certain

assumptions about other components of the platform. As designs of

components are completed and new components are examined and

detailed, the previous designs will be re-examined to determine if the

assumptions made during the design of that component still hold.

This document represents the design of the Framework Processor, the

second component addressed as part of the design of the FPP. The initial

design document [FPP 91] centered on the Integration Mechanism
component of the FPP. In light of the design process described above, the

design described in this document can be considered a "living" design. This

means that revisions can, and probably will, be made to this design. While

the changes that may occur will expand and clarify areas where the

current design may be lacking, major revisions to the Framework

Processor design are not expected.

1.4 Document Organization

Discussing the design of the Framework Processor requires discussion of

several topics: (1) the concepts behind framework processing, (2) the

structure of the framework, and (3) the components required to manipulate
and use the framework definition.

The discussion begins in Section 2 with a presentation of the role

frameworks can play in the software development process and strategies

for using the framework to provide automated support for software

development. An understanding of these topics is necessary to follow the

design of the Framework Processor as the concepts discussed in this

section lay the groundwork for the framework structure and framework

processing capabilities discussed in later sections.

Framework Processor Design Introduction

4

Section 3 is dedicated to the description of the syntax for and structure of the

framework definition. This discussion reflects a major part of the design

process as the structure of the framework representation had to ensure that

the expressive capabilities of the framework were not limited. To limit the

framework specification would make it difficult to capture the complexities
of the software development process and thus limit the capabilities of the
Framework Processor.

The design of the Framework Processor is presented in Section 4. A major

part of the operation of the Framework Processor revolves around

constraints and constraint propagation. A considerable part of this

discussion describes how the structures that make up the Framework
Definition (Section 3) are transformed into constraints and then used by the

Framework Processor to manage the software development process. The

other components of the Framework Processor are also discussed. A

scenario of operation then shows how the various pieces of the Framework

Processor fit together.

Finally, Section 5 relates the Framework Processor design to the other

components of the FPP and discusses areas where future work on the
Framework Processor could be directed. Section 5 is followed by two

Appendices. Appendix A presents a list of acronyms used in this

document, and Appendix B shows the grammar for the Definition

Component and the Elaboration Specification of the Framework Definition.

Introduction Framework Processor Design

- 5

2 Framework _r Concept

Before a discussion of how the Framework Processor (FP) accomplishes its

task, an overview of what the Framework Processor is intended to do must

be provided. A major goal of the FPP project is to capture a description of

an organization's software development process and to use that description
to monitor and control the actual development of software systems. Within

the context of the FPP project this system development process description

is captured in a framework. The purpose of the Framework Processor is to

process and interpret this framework and to use the information stored in

the framework to control an organization's development projects. It is

through the information captured in the framework and the functionality

provided by the Framework Processor that the FPP will be "programmed."
The framework will serve as the program or source code while the

Framework Processor will act as a compiler and/or interpreter.

2.1 The Development Framework

The overall framework to be processed by the Framework Processor is made

up of two overlapping views. One view is the Situation Classification

Framework (SCF) view and is concerned with the identification and

definition of specific development situations. 1 The other view is the System
Development Framework (SDF) and is concerned with life cycle analysis,

design, implementation, maintenance, and decision-making activities.

The following two subsections will discuss the nature and content of these
two views. More detailed discussions of the content of the framework can be

found in Section 3.

2.1.1 Situation Classification Framework

In the development of software systems, different representations of a

system architecture are developed at different stages of the development

process. The Situation Classification Framework attempts to characterize

the development situations that require the different representations. This
characterization includes identification of the roles, responsibilities,

conditions, prior commitments, and information involved in a situation

that results in a need for a particular class of representation. This

necessary representation can then drive the selection of specific methods

for capturing that representation. 2

1 In the FPP Concept of Operations Document [FPP 90a], the SCF was described as the
Method Classification Framework (MCF). In our research since the production of that

document, the scope of this framework view has broadened to address development
situations rather than just the methods used in those situations.

2 It was because of this selection of methods that this framework view was originally

labelled as a Method Classification Framework.

Framework Processor Design Framework Processor Concept

6

OBJECTIVES/
SCOPE

DOMAIN
MODEL

MODEL

OF THE
BUSINESS

MODEL
OFTHE

INFORMATION
SYSTEM

TECHNOLOGY
MODEL

DATA USER

List of Things List of See nerios

Important to User Performs

Business BSP _ IDEF3
[] IDEF5 BS P

ENTITY = Class of IDEFO

Business Thing

J.g. Concepl Model e.g. User Role

Description
tDEF3

IDEF5

ENT = Bus. Con.

Rein - Assodation

e.g.,Entity/ ie.g. Organizatio n
Relation Diagram Pm,',essDescrip.

IDEF1

IDEF3

ENT = Into. Enflly
Rein = Bus. Rule

e.g.. D=ta Model

ENT, Data Entity
Rein. Data Rein

• .g., Data Oesig n
IDEF4

ENT= Segment
Rein. Pointer

e.g., Transa=ton
model

IDEF3

e.g., Objecl Design

Beech

IDEF4

FUNCTION NETWORK

List of Processes

Business performs

IDEF3

CSF
Proce_. Class of

Business A=k, lty

e.g. Business
Process Descsip.

IDEF3

IDEF5

IDEFO

e ,g., Function

Row Diagram

IDEFO

e.g., Data

Row Diagram

DFD

e.g., Structure
Char1

IDEF4

List of Locations

in which _e

business operates

e.g., Logistics
Network

Node,, Bus. Unit
Link= Bus. Re_atn

e.g., Distribuled
System Arch

?

N Odo-YS Func.

. ink-Line Char.

e.g., System Arch

?

Node.Hardware

Link.Line Spat,

e.g, Data Design e.g., User inter- e.g., Program • .g., Network
Description Face Code Architecture

ENT- Field

Rein • Address

Ev_'rru_UNCT|ONING • .g., Data e.g., Scenario e.g,, Fun=ion e.g., Communicatn

Figure 1. The Zachman Frmnework

An example of a Situation Classification Framework derived from John

Zachman's original framework [Zachman 86] is shown in Figure 1. The
framework is represented as a matrix in which the six rows represent
different perspectives (or views) and the four columns represent focuses of
descriptions of an information system architecture. The perspective
organizes the descriptions of the system architecture with respect to
multiple viewpoints (e.g., the executive, the manager, the programmer,
etc.). The focus organizes the descriptions with respect to the level at which
the system will operate. Thus, each cell in the matrix represents a
situation with a particular focus from the perspective of a user's viewpoint.

For example, the framework illustrated in Figure 2 involves members of an
enterprise working to develop an information system that will provide the
data required to evaluate the corporation's critical success factors. To this

end, the corporate manager is trying to identify information needed to
determine if his/her corporation is meeting the critical success factors of
the enterprise. The business manager is trying to identify information
needed to determine if his/her business is meeting the goals passed down
from corporate. So, both people are taking the same focus (i.e., the data or

Framework Processor Concept Framework Processor Design

- 7

information focus), but from two different perspectives. For this example,
the general situation type for the data column is to analyze the information

requirements necessary to evaluate performance measures at the various
levels of the organization.

Im ust succintly formulate my

goals and crilical success factors

soflaatI can getan in form ation

system _atgives methe date I

needt_knowif lain on track.

DATA

rm afion I need _run the[

nessand m easure

rm _mce agai_ _ _Business

Admini _tm_r I

_Ineed t_know what _m

[structures Imustcreate,

| stare,an d modify to
| managethe date and to _

__ Programmer

FUNCTION
ss _

Figure 2. Development Process Situation Types

Each cell in a framework represents a characterization of reoccurring
development situations in an organization. As such, the Situation

Classification Framework provides a means to carry the experience base

from one project to another within an organization. In addition, the
framework can provide a degree of control over the system development and

provide consistency between projects requiring multiple project

coordination, management consistency, and personnel utilization.

Framework Processor Design Framework Processor Concept

8

2.1.2 System Development Framework

While the Situation Classification Framework view attempts to categorize

the development situations that arise during system development, the
Situation Classification Framework provides no means for capturing

temporal relationships between the various situations. In addition, there
are no means for capturing the details of the processes and activities that
occur within the situation types. With the System Development Framework
on the other hand, the intent is to capture these procedural aspects of an

organization's system development process.

Focu s
r

cD

st art

here _'-_ "-_ I. 1.

[

h

Q

Figure 3. Precedence Relationships Between Development Situations

The System Development Framework view of the FPP framework can be
seen to have two process components. The first is the overall system
development process description that attempts to define the sequence of
situations that are encountered during the development process. Figure 3

illustrates precedence/temporal relationships defined between the various
cells of the Situation Classification Framework. Within the Situation

Classification Framework, there is no sequence or ordering to the cells of
the framework. However, in the specialization of the framework for an

organization, the definition of the temporal relations between development
situations will be an important activity. Notice in the figure that some cells
are "visited" while other cells are ignored. It is likely that the set of visited

cells and the sequencing of those visited cells will be different for different
classes of system development activities or for different organizations.

While the first process component addresses the overall development

process, the second process component of the System Development
Framework describes the specific activities necessary to address the

Framework Processor Concept Framework Processor Design

- 9

development situations represented by the individual cells of the Situation
Classification Framework. These system development process definitions
include not only the life cycle phases, tasks, milestones, and documentation
artifacts, but also:

1) descriptions of the procedures for analysis, decision

making, and configuration control;
2) calls for the application of specific methods;
3) definition of common information/data across the

different methods;
4) descriptions of how method results will be applied; and
5) role definitions.

Together, these data provide a complete description of the process by which
an organization addresses the development situations represented by the
Situation Classification Framework.

IDEF3, the method chosen to represent the development processes, has the
necessary features for capturing both the above process description
components. With IDEF3, each of the situation types characterized by the
cells in the Situation Classification Framework can be represented as UOBs
(Units of Behavior) at the overall system development process level. The
sequencing and the relative timing of these situations can be represented in
the IDEF3 diagrams using precedence links. IDEF3's ability to decompose
UOBs will facilitate the description of the activities necessary to address
each of the high-level situations.

2.1.3 The Combined Framework

The preceding discussion has presented the two framework views as being
separate structures. In actuality, the two frameworks are closely linked.
By moving down a level of abstraction from the Situation Classification
Framework, it is apparent that each cell of the Situation Classification
Framework points to more information as shown in Figure 4. Part of this
information is the process description that captures details of the activities
involved in addressing the situation. Therefore, the System Development
Framework is partitioned and distributed across the Situation
Classification Framework. The FPP will take this approach towards the
framework definition. The Situation Classification Framework will serve

as an organizing structure for the information necessary to capture an
organization's development process.

Framework Processor Design Framework Processor Concept

10

Site Specific Framework

Preferred

Methods/Tools
Step 1

Tasks Life Cycle
Artifacts

Smp2A

Step 2B

Figure 4. The FPP Framework

Taken together, this overall framework provides structure for the

description of the software development process and:

1) provides a "big picture" of the system development

process;

2) provides a "quick road map" for the participants in the

system development process;
3) identifies standard methods and tools;

4) specifies applicable tools and methods at a site;

5) assists in the planning and scheduling of the system
development process;

6) orchestrates the use of integrated tools and methods; and

7) summarizes the standard development process at a site.

Once a framework has been defined, the opportunities for use of this

knowledge base are almost limitless. Some of the capabilities that will be
possible through the use of this approach are:

Framework Processor Concept Framework Processor Design

11

1) Context Defined Tasking,

2) Life Cycle Data Management and Control,

3) Automated Project Status Reporting,
4) Documentation Generation, and

5) Automatic Problem Notification.

These types of capabilities are possible because the framework completely
defines the activities that will occur during the development process, the

relationships between those activities, the objects (e.g., documents, code,

and modules) that will be manipulated during a particular activity, and the

roles of people that will be involved in the activity.

2.1.4 The Framework Cell Definition Process

At first glance, it appears simple to define a framework for an

organization. However, once one starts puzzling over the individual cells,

three issues are quickly recognized:

1) Only experienced system developers understand the

recurring situations and complex interactions between

the roles and objects of interest that must be represented
in the framework.

2) Accurately describing each situation in a manner that is

clearly understood by others involved (both directly and

indirectly) in the development process is non-trivial.

3) Reference frameworks are adequate starting points, but

never quite fit the site specific situation upon close

inspection.

One of the promising approaches for specializing site specific frameworks
from reference frameworks is based on the observation that one way to

characterize a situation type is by identifying the questions that should be

answered by a properly executed instance of that situation type. Rather

than trying to initially identify the situations, roles, objects, and relations of

interest, it is often easier to collect the questions that we would like to

answer from the artifacts produced by the (yet unidentified) situation types.
This approach is consistent with Zachman's initial intuition that the cells

represent descriptions of the envisioned (or actual) system that reduce risk

by explicitly documenting the various decisions and views of the system.

That is, if I want to know why a particular piece of data exists in the

system, I should be able to find a business performance or operational

information requirement that that data supports directly (or a system

design decision that requires that data for operation of the system that

ultimately supports that business requirement).

Upon examination of a typical framework, we can classify general question

types, and we can identify general question templates within each question

type. One such question type is referred to as an _introspective" question.

Framework Processor Design Framework Processor Concept

12

Introspective questions are questions associated with a cell that are directed

at the personnel in the organization who have the perspective indicated in

the row label of the cell. An example of such an introspective question is

"What are the goals of the enterprise that are affected by the system?" Such

a question would be associated with the cell in row one and column one of

the Zachman framework shown in Figure 1. It happens that such a

question is also a good example of an instance of a reoccurring question

schema. One of the general templates for introspective questions is "<what,

who, where, when> <be verb form> the <column focus> of the <row

perspective> of the <system name>?"

Once the question templates have been specialized for a site, the next step in
the cell formulation is the definition of the situations within which such

questions could be answered. The roles of such a situation definition would

include those types of personnel either responsible for getting the answer or
in possession of the information that the question is asking for. The objects

of interest often represent the elements of the answer to the question, as do

the object relations. Once the situation descriptions have been formulated,

the next step is to specify the rules that govern the question answering
process in such a situation. These rules can reference the results of other

cells as well as the objects and roles of a particular cell. The process

definition itself would take the form of a set of IDEF3 process descriptions.

It is also at this stage that the selection of methods (and tools) to support

this process application (and rule enforcement) would be accomplished.

Finally, the rules for how the answers to the questions are to be used and

managed must be defined. This process can be accelerated by having

access to generic or reference frameworks.

In this project, the process description captured by the framework will be

used to monitor, manage, and control development projects. To ensure that
the Framework Processor operates correctly requires that the framework

accurately reflects the actual process followed or desired by the

organization. The operation of the Framework Processor will only be as
valuable as the information maintained in the framework. Because of the

importance the FPP will place on the defined framework and of the

inherent complexity of frameworks, the task of defining a framework for a

specific organization should not be taken lightly.

2.2 Framework Processor Arctfitecture

The previous section has provided an overview of the basic content of a

framework from the perspective of the FPP project. This section will now

detail how the Framework Processor will use the framework to provide

automated support for the management and control of the software

development process. The description will begin with a conceptual

discussion of the relationship between the Framework Processor and the
Integration Platform, the software development environment used at a

particular organization. This discussion is then followed by a description of
the functional architecture of the Framework Processor.

Framework Processor Concept Framework Processor Design

- 13

2.2.1 Framework Processor Conceptual Architecture

The Framework Processor is intended to serve as a controlling mechanism

over the software system development process. This requires the

Framework Processor to interact with an organization's development

environment (platform). During the evolution of the Framework

Programmable Platform (FPP) project, the relationship between the

Framework Processor and the actual integration platform / environment

has been studied from many different views. An initial view is shown in

Figure 5. In this view, the Framework Processor plays a passive role by

simply processing the framework specification and "loading" a set of

knowledge bases. These knowledge bases are then accessed by the

Integration Platform to monitor and control the development process.

Integration
Platform

Framework

Processor

Figure 5. Initial Framework Processor / Platform Relationship

A more detailed architecture for this relationship is provided in Figure 6.

The Framework Processor would take as input the framework definition
and translate the it to a neutral representation. This neutral

representation could then be accessed by an integration platform, through

an appropriate interface.

ramewor I:_ocessor _Representafion_ Platform

Figure 6. A More Detailed View of the Initial Relationship

This view reflects a very close relationship between the information

represented in the development framework and the integration platform
and places the burden for understanding and the contents of the framework

and for using the framework information to control the development

process on the integration platform. As a result, the Integration Platform

was tied very tightly to the structure and content of the framework, and the

framework was tightly coupled to the functionality of the Integration
Platform.

Framework Processor Design Framework Processor Concept

14

However, the evolution of numerous integration efforts and products have

prompted the development of a more general view for the Framework

Processor. This view requires the Framework Processor to take a more

active role in the controlling process. A conceptualization of this new view

is reflected in Figure 7. Upon initial examination, this view does not

appear to be very different from the previous views. However, differences do
exist. The main difference is that the interfaces now lie between the

Framework Processor and the Integration Platform as opposed to the

previous view where the interfaces were defined between the Integration

Platform and the knowledge base containing the neutral representation.

As such, these new interfaces require a degree of cooperation between the

Framework Processor and the Integration Platform and will provide the

means by which an Integration Platform can send messages to the

Framework Processor about operations performed as part of the

development process. Therefore, the Integration Platform will notify the

Framework Processor of the completion of certain events. The Framework
Processor will then determine whether that event has any effect on

currently active development projects.

Framework

Processor
y

Interfaces

Integration
Platform

Figure 7. The Generalized Relationship

Although this view allows the Framework Processor to be applied to many

different integration platforms, the capabilities of the Framework Processor

might be limited by the number of interfaces the particular integration

platform supports. To its advantage, though, this view will not require the

integration platform to manipulate the information represented by the

framework in order to manage and control the development process. For

this reason, the design of the Framework Processor is based upon this

second conceptual view.

2.2.2 Framework Processor Functional Architecture

The previous section has addressed, at a high level, how the Framework

Processor will operate and interact with integration platforms. Essentially,
the Framework Processor lies between a framework definition and an

organization's development environment (integration platform). This

section will address, still at a relatively high level, the functionality

required to operate between the framework and the environment. This

functional description will be provided by identifying and discussing the

components that make up the Framework Processor and the roles that

Framework Processor Concept Framework Processor Design

- 15

those components play in processing and managing a framework
definition. More detailed discussion on the operation and specification of

each of these components will follow later in this document.

O

Session Manager

Framework Manager
I I

i I Platform
Framework I I Interface

I I

Parser i iManager
I I

Validator

,N
!

r _ m Rm

J _ Constraint

Propagator

Fact Base
Manager

/IX /IX
v=lv r=l

Figure & Framework _rArchitectm_

Figure 8 presents the functional architecture for the Framework Processor.

The basic operational philosophy of the Framework Processor is to take a
framework as input, perform several validation checks on the framework,
translate the framework into a set of constraints and facts, and then use the
facts and constraints to control the development process. During this

process, the set of facts and constraints are continuously updated as a
result of actions by users and messages from the integration platform (i.e.,
the notification of the occurrence of certain events). This dynamic situation
is continuously monitored to detect inconsistences between the process
specified in the framework and the actual events occurring during the
system development.

The overall operation of the Framework Processor is controlled by the
Framework Manager. Prior to framework installation, the Framework

Manager coordinates the framework validation process by parsing the
framework and extracting the appropriate information for the Validator
component. Three levels of validation are performed by the Validator
component:

1) syntax - to ensure the IDEF3 descriptions included in the
framework definition adhere to the syntax rules of the
method;

2) instantiation - to ensure that a realization of the process
represented by the framework does not contain any
inconsistencies (e.g., at one point in the framework

Framework Processor Design Framework Processor Concept

16

3)

specifying a constraint that is contradicted at another
point in the framework); and

simulation - to detect inconsistencies that cannot be

detected at instantiation by simulating potential process
scenarios.

Each of these validation steps are complex enough to require an individual
sub-component within the Validator. In the event that inconsistencies are

detected, the Framework Manager would assist the framework

administrator in correcting the inconsistencies.

Users]

Operations / _

Requests N_

I IntegrationPlatform [

Messages_/

/ / Event

//Notifications

Framework Manager I

Deductions/ //

Contradiction//

/"/" Assertions

I' Constraint I

! Propagator I

___nconsistencies

I FactBa'eIManager

Figure 9. Framework Manager Operation

After validation has been completed, the framework is installed and project

instantiations can be performed. Once a project has been instantiated, the

Framework Manager begins to monitor and control that project
development. Figure 9 shows how this monitoring is performed. At project

instantiation, an initial set of assertions are passed to the constraint

propagator and a set of facts are passed to the Fact Base Manager. From

that point, information about operations and events performed and requests

for authorization by project members are continuously passed to the

Framework Manager from the users (through the Session Manager) and
the Integration Platform. This information is then passed to the

appropriate knowledge base (i.e., constraint base or fact base). If

contradictions or inconsistencies are detected, it is up to the Framework

Manager to take appropriate action to resolve the conflict. If no problem is

detected, the operations are performed, and the project state is updated.

Notice that the knowledge bases have been split between facts and

constraints, and accordingly two different components have been devised to

Framework Processor Concept Framework Processor Design

- 17

manage those knowledge bases. The reason for this is that the information

represented in the framework is so diversified that using a single

reasoning scheme became impractical. Instead, the fact base and the Fact

Base Manager capture and manage information about access privileges,
users, user roles, etc., while the constraint base and the Constraint

Propagator contain and maintain the state of the project development

process. As such, the Fact Base Manager processes the static framework
information, while the Constraint Propagator processes the dynamic

process-oriented framework information.

Interaction between the users and the Framework Processor can occur

either by direct interaction or indirect interaction. Direct interaction will be

managed by the Session Manager. This component will, for the common

user, provide capabilities for logging into a specific project, checking the

status of the project, inquiring about open tasks, and browsing the system

development process. For special users like framework administrators and

project managers, the Session Manager will provide the mechanisms for

installing frameworks and instantiating projects based on a particular
framework. Indirect interaction with the Framework Processor can be

achieved through the Integration Platform. The architecture for the

Framework Processor supports interfaces between itself and the

Integration Platform. If the platform supports these interfaces, the

platform can send messages to the Framework Platform to indicate the

performance of certain operations by the user. In a similar manner, the

Framework Processor can send messages detailing the consequences of

those events back through the Integration Platform to the user. This ability

to support indirect interaction depends on the degree to which an

organization's development environment is integrated with the Framework
Processor.

Framework Processor Design Framework Processor Concept

19

3 Framework Definition

As was mentioned previously, the framework definition is a complex

process. Just as important, however, is the representation of the
framework contents. The information describing the development process

must be structured in a format that will allow efficient processing by the

Framework Processor so that the Framework Process can enforce the

policies and procedures captured in the framework. The purpose of this
section is to define the organization and structure of the information within

the framework. Essentially, this definition provides the syntax for the

framework definition.

In the previous section, the representation of the knowledge about the

development process was partitioned into two frameworks: the Situation

Classification Framework and the System Development Framework. In

the specification of the framework structure to follow, these two framework

views are integrated into one logical framework structure. Figure 10 shows

how the two concepts of classification and process can be combined. In this

form, the situation cells become UOBs and the matrix transforms from a
static classification scheme into a dynamic process description of the

software development.

Focus

Figure 10. The Framework Translated to IDEF3

The framework is the medium for providing system development

knowledge to the Framework Processor. Thus, the framework is much

Framework Processor Design Framework Definition

p_I'ECEDI.NG PAGE BLANK NOT FILMED

20

more than just a matrix containing the names of methods and artifacts.

Instead, it is the collection and organization of all of the situations that

make up the software development process along with the processes, tools,

methods, user roles (or types), and artifacts that are instrumental in the

development of a software system. For the purpose of the Framework
Processor, the definition of the framework structure breaks down into two

major components:

1)

2)

The Definition Component defines the acceptable
vocabulary for the framework representation, in essence

the ontology of the development process;

the Process Specification Component defines the system
development process and the facts and constraints

pertaining to that process.

The following sections will further define the structure this framework

medium must take and will specify the types of information that should be
represented in the framework.

3.1 Definition Component

The Definition Component establishes the vocabulary for use within the

Process Specification Component. The advantage of a common vocabulary
lies in the ability to standardize the framework definition on a common set

of terms, thus providing the means for the Framework Processor to validate

the framework definition by preventing completely free-form constraints.

The Definition Component supplies the ontology for the framework as it

identifies those object types that will exist within the development process
and whose instances can be referenced in the framework definition.

These objects fall within broad types of which there are currently five
identified, including:

1) a User Role, which identifies a class of project members;

2) an Artifact, which identifies a product of the development

process;
3) a Tool, which identifies a tool running in the development

environment;

4) a Method, which identifies a method used by an

organization; and

5) a Relation, which identifies a user specified relationship.

During the definition of the framework structure, it was determined that

some objects exist outside the scope of the framework. Despite this fact,

knowledge about the existence of these objects is required for the

Framework Processor to function properly. For this reason, these object

types are included in this discussion. The two object types presently
identified are:

Framework Definition Framework Processor Design

- 21

6) a User, which identifies an individual within the

organization and

7) a Project, which identifies a current development effort.

The statements defining the objects that make up this vocabulary are

captured in a set of definitional forms and are discussed in the following
subsections.

3.1.1 User Roles

Much of the control of the software development process is dependent on the
role played by the user. The users of the FPP will have different

responsibilities and access privileges depending on their function in the

development process. The Framework Processor must have some way of

distinguishing these differences for it to manage the development. This is

accomplished by defining user roles for the site. The syntax for defining the
user roles is as follows:

(DEFUSERROLE : N_Mr symbol)

where symbol represents a user role. This defines a user role and allows

its use in relations, facts, and constraints within the framework. For

example, the user role programmer is defined by the following:

(DEFUSERROLE :NAME programmer)

When the framework is instantiated, programmer will be a valid user role

and can be used to constrain access to artifacts and processes.

3.1.2 Artifacts

Any large software development effort will generate a large number of
documents, reports, manuals, code modules, and other objects, otherwise

known as artifacts.3 These artifacts can progress through different states
of evolution during their life cycle. The Framework Processor must know

the valid states in which an artifact may exist throughout the development
process. In addition, the Framework Processor must know what tools can
be used to evolve the artifact.

This information is provided in a DEFARTIFACT statement. The syntax for
this statement is shown below:

3 Although artifacts can exist in paper form, throughout this document the term artifact

refers only to the electronic media representation, as this is the only form to which the
Framework Processor can effectively control access.

Framework Processor Design Framework Definition

2

(DEFARTIFACT :NAME

:TOOLS

:METHODS

:STATES

symbol
(toolo, tool1, ..., tooln)

(methodo, method1, ..., methodn)

(stateo, state1, ..., staten))

where symbol is the unique name for an artifact. Toolo, tool1, ..., tooln are

names of tools that can be used to evolve the artifact. Methodo, method1, ...,

methodn are the names of methods that can be used to capture the

information contained in the artifact. Stateo, state1, ..., staten are the

names of the valid states that the artifact can have during its evolution. An

example of how to define the SoftwareTestReport using the DErARTIFACT
statement is shown below:

(DEFARTIFACT :NAME

:TOOLS

:METHODS

:STATES

SoftwareTestReport
(MSWord, WP50, Emacs)

()
(Uncreated, Created, InProgress,

InReview, Rework, Completed))

It should be noted that an artifact will have other attributes that are

required by the Integration Platform for both storage and tracking that can

be accessed by the Framework Processor as needed. However, this

information is not placed into the Framework Processor's knowledge bases.

3.1.3 Tools

Tools are used by the software development team to create, view, and modify

artifacts required by the framework definition. A tool may or may not have

a method associated with it. For example, a word processing tool does not

have a method, whereas Automated IDEF0 (AI0) supports the IDEF0

function modeling method. A tool may be capable of supporting more than

one method. A tool supports a set of file formats for saving the information

it captures. By combining these facts, resulted in the development of the

following form for defining tools:

(DEFTOOL :NAME

:VERSION

:FORMATS

:METHODS

symbol

string
(formato, format1, ..., formatn)

(methodo, method1, ..., methodn))

where symbol is the name of a tool and string the tool's version number.

Formato, format1, ..., formatn are the formats the tool uses for reading and

writing files. Methodo, method1, ..., methodn are the names of the

modeling methods supported by the tool.

3.1.4 Methods

Defining the methods that are available at a specific site is accomplished in

a fashion similar to the user role definition. At this point, only the

Framework Definition Framework Processor Design

- 23

declaration that a method exists and is accepted for use within the system

development process is necessary. The form for specifying this information
is:

(DEFMETHOD :NAME symbol)

where symbol is the name of a method. For example, to establish IDEF0 as

an accepted method simply involves the specification of the following form:

(DEFMETHOD :NAME IDEF0)

After defining the methods that are allowed, the framework designer can
now use the method names within facts and constraints.

3.1.5 Relations

The relations are the means by which a framework designer can introduce

user-defined relations that can be used in the specification of the

framework. Once a relation has been defined, the relations can be used in

constraint specifications. To define a user-defined relation, the following
form is used:

(DEFRELATION : NAME symbol)

where symbol is the name of the user-defined relation. An example of a
user-defined relation is shown below. It should be noted that an open issue

concerning the DEFRELATION form is whether the number of arguments to

the relation should be specified in the DEFRELATION form. Knowing the
number of places in the user-defined relation would assist the Framework

Processor in performing consistency checking. However, it is unclear at

this point if the relations involved would always have the same number of

arguments. For this reason, the NUMBER-OF-ARGUMENTS slot, as it would be

called, is not currently part of the DEFRELATION form specification.

(DEFREI_TION :NAME design-paradigm)

The design-paradigm relation can now be used in constraints to better

represent an organization's development process. The following example

shows how this can be accomplished. Refer to Section 3.2.1.2.3 for a full

explanation of the syntax and semantics of this example.

(-> (DESIGN-PARADIGM object-oriented)

(ARTIFACT-ACCESS design-document :METHOD (IDEF4)))

If this constraint were included as part of a task's elaboration (see Section

3.2.1.2.3), it would specify that the design-document must be prepared
using IDEF4. This example assumes that the (design-paradigm object-

oriented) relation was asserted to be true previously. This allows the

Framework Processor Design Framework Definition

24

system development process to dynamically modified based on decisions
made during that process.

3.1.6 Users

Often, in the framework definition, the granularity of user roles are not

sufficient for specifying access privileges. In these situations, it becomes

necessary to refer to a specific user, as in the case where a task can only be
signed-off (i.e., completed) by a single person. To define a user, and

therefore make that person accessible to the framework definition, the
following form is used:

(DEFUSER :NAME

:PASSWORD

:PROJECTS

symbol

symbol

(proj-roleo, pro j-role1 , proj-rolen))

where the first symbol is the user-id of the user, the second symbol is the

password for logging into the system, and proj-roleo, proj-rolel, ... , proj-

rolen is a set of project-role pairs. An example entry for the user profile

data might look like the following:

(DEFUSER :NAME

:PASSWORD

:PROJECTS

John-Doe

(<XYZ, Analyst> <ABC, Project Leader>)

With definitions of this type, the framework has the knowledge about users

that is needed to provide proper access control. For example, suppose the
framework specifies a constraint that an artifact for project XYZ can only

be accessed by the Project Leader. If John-Doe (above) tried to modify the

artifact, the Framework Processor would check the user profile for John-

Doe and find that he has the Analyst user role for this project and thus does
not have the required authorization to access this artifact.

3.1.7 Projects

The definition of a project serves to provide a placeholder for a development

effort being managed by the Framework Processor. This placeholder can

serve to partition the information in the knowledge bases by associating

facts and constraints with specific projects. This partitioning will

eliminate conflicts that would arise from multiple projects using the same
framework by allowing the Constraint Propagator to make deductions

based only on the assertions surrounding a specific project. Additionally,

the project can serve as the destination of messages sent by the Integration

Platform to the Framework Processor detailing events surrounding that
particular project. Finally, the project definition provides a means of

associating a user with a specific project so that the Framework Processor

can determine user access privileges for each project. To define a project,
the following form is used:

Framework Definition Framework Processor Design

25

(DEFPROJECT :NAME symbol)

where symbol is the name of the project. To define the FPP project, for

example, would require the following form:

(DEFPROJECT : st_t,,l_:FPP)

The DEFPROJECT form and the other definitional forms are concise in nature.

Nevertheless, these forms provide improvements in the operation of the

Framework Processor by simplifying the validation process. These
statements define the appropriate set of terminology to the Framework
Processor so that elements that do not have a definition can be detected as

an error in the framework definition.

3.2 Process Specification Component

With an understanding of the terminology and agents (provided by the

Definition Component) that will be part of the framework definition, the

specification of the more complex development process information can

begin. The Definition Component defined the objects produced by the

development process and the agents and mechanisms (e.g., tools and

methods) used for creating and evolving the objects. With the Process

Specification Component to be described in this section, the framework

designer can complete the framework definition by specifying where, when,

and how those objects should be manipulated (i.e., the place in the system

development process where the objects should be created, the tools and

methods for creating the objects, and the sequence in which the objects

should be created) and who should do the manipulation.

The Process Specification Component of the framework is intended to

capture this complex development information by providing a rich set of

language constructs for expressing and capturing the complex

relationships that exist within development situations. In deriving these

language constructs, effort was made to ensure that they be computable. It

is with these computable forms that the Framework Processor will manage

and control the development process.

The language constructs devised follow the conceptual framework
description provided in Section 2.1. In that discussion, the framework was

partitioned into two separate views, the Situation Classification Framework
and the System Development Framework. While the two views have

different areas of focus, there is a considerable amount of overlap in the two

views. In fact, because of the expressive power of the process description

language, it is possible to completely absorb the information represented in

the Situation Classification Framework into the System Development

Framework. Figure 11 displays this concept. All development process

knowledge is provide by the process descriptions. An external view of a

subset of this information can then be defined that represents the

classification of the situations that occur during the development process.

Framework Processor Design Framework Definition

26

Process Descriptions
Situation

Classifications

Development Process
Knowledge

Figure 11. Development Framework Representation

This is precisely the strategy taken by the Process Specification Component.
Within the representation structure provided by the Process Specification
Component, two modes of information capture are provided. The Process
Flow Description structures capture the process oriented nature of the
development process. Embedded in this process information is the
situation information (e.g., tools, methods, users, and artifacts). Once
these descriptions have been defined, a Situation Classification Matrix can
be defined to create an external view on the process descriptions that take a
more situation oriented focus. The following two sections will describe how

the Process Flow Descriptions and Situation Classification Matrix are
defined. The first subsection addresses the syntax and structure for the
process description diagrams. The second subsection will address the
definition of situation classification matrices and how they are derived from

the process descriptions.

3.2.1 Process Flow Descriptions

With the Process Flow Descriptions, the framework designer captures the
system development process, including the facts and constraints pertaining
to that process. The means by which these process descriptions are
captured is a set of diagrams based upon the IDEF3 Process Description
Capture Method [Mayer 90].

Framework Definition Framework Processor Design

27

A process, in general, involves objects with certain properties standing in
specified relations. A process can also stand in relations with other
processes (e.g., a process can start, suspend, and terminate other
processes; objects or information about objects can be shared between
processes; one process can change the properties of such a shared object

and "cause" the exclusion of another process execution; etc). IDEF3 was
chosen as the representation scheme for the development process
framework because of its power in representing processes. The basic
strategy of IDEF3 is centered around the capture of descriptions of process
flow (processes and their temporal, causal, and logical relations) in
addition to the identification of objects that participate in these processes.

To be consistent with the format of this document, a discussion of the

syntax by which IDEF3 diagrams would be presented to the Framework
Processor is required. However, a design assumption made for the
Framework Processor requires that an IDEF3 tool be tightly coupled with
the Framework Processor. This design assumption will be handled in one
of two ways: (1) the IDEF3 tool will be subsumed by the Framework
Processor or (2) a structured interface between the IDEF3 tool and the

Framework Processor will be defined. In either case, the Framework
Processor will still have access to the internal representation of the IDEF3

diagrams. For this reason, no textual representation for IDEF3 was
produced as part of this design (see Section 5.3 for further discussion on the
generation of a textual IDEF3 format).

Despite this lack of formal textual syntax for the IDEF3 diagrams, a
discussion of how the diagrams will be interpreted is still possible.
However, before turning to the subject of interpretation, a brief overview of
the elements of IDEF3 is required.

3.2.1.1 IDEF3 Overview

An IDEF3 Process Flow Description captures a network of relations
between activities. An IDEF3 Process Flow Diagram consists, in part, of
the following structures:

1) Units of Behavior (UOBs),
2) Elaborations,
3) Junctions, and
4) Links.

An example IDEF3 diagram is shown in Figure 12.

Framework Processor Design Framework Definition

28

Receive Ac_vate

Contact _am Ran

Hold Kick-

Subcontracts offMtg.

planning

Figure 12. An Example Process Flow Diagram

The Unit of Behavior (UOB) is the basic unit of the Process Flow Diagram

and is used to represent a task or activity. In the example, the Receive

Contract element represents a UOB. A UOB is displayed with its label,

node number, and optional IDEF_ activity reference number. The label

should be verb-based to provide some indication as to what process is being

represented by that particular UOB. Perhaps the most powerful aspect of

the UOB is its ability to be decomposed. Within a decomposition, greater

detail as to how a process or activity is performed can be given in the form of

another IDEF3 diagram. In essence, a UOB can be described in terms of
other UOBs.

CONSTRAINTS:

Figure 13. An Elaboration of a UOB.

Another way to capture information about a UOB is through the

Elaboration. Every UOB in an IDEF3 diagram can have an Elaboration

attached to it. Figure 13 shows a conceptualization of how an Elaboration

Framework Definition Framework Processor Design

29

relates to a UOB. The basic idea is that an Elaboration is simply a form
where facts about the UOB and constraints on the UOB can be described.

IDEF3 currently places no limitations on the form that these Elaboration
statements can take (i.e., natural language). However, the Framework

Processor has specified a syntax for the Elaboration specifications (see
Section 3.2.1.2.3).

UOBs, in and of themselves, do not sufficiently capture a description of
complex processes. To remedy this, IDEF3 provides the mechanisms for
arranging these UOBs into complex networks of activities. A relationship
between UOBs is represented by a Link. In the example shown in Figure
12, Links are represented by the directed arrows. Though not displayed in

the example, IDEF3 has defined three different link types as shown in
Figure 14. The Relational link represents a user specified relationship (this
should not be confused with user-specified relations defined with the
DEFRELATION form); the Precedence link represents a temporal relationship
between two UOBs; and the Object Flow link, along with the precedence

relationship, specifies that objects participating in the UOB at the source of
the link are passed to the UOB at the destination of the link.

Relational Precedence Object Flow

Figure 14_ IDEF3 Link Types

To highlight constraints on possible sequencing relations among UOBs,
Junctions are used. A Junction can be used to link branches of the process

flow that can proceed independently of each other. The representation for a
Junction is shown in Figure 15. Each junction has an associated type and
sequencing interpretation. The types supported in IDEF3 are AND, OR,
and XOR; the semantics of which are equivalent to their logical meanings.
Additionally, a Junction can capture relative timing constraints between
the different branches by specifying whether the initiation of the branches
occurs synchronously or asynchronously.

Asynchronous

[JunctionType

Synchronous

[] J ct °n I IType

Junction Type

& AND

O OR

X XOR

Figure 15. IDEF3 Junctions

Framework Processor Design Framework Definition

3O

3.2.1.2 Framework Definition in IDEF3

The IDEF3 components just described provide a rich set of language

constructs that allow a framework designer to provide very detailed

specifications of the development process. The use of IDEF3 is made very

attractive by the fact that the formal semantics of IDEF3 make IDEF3

diagrams computable. However, the desire to maintain the framework

definition in an interpretable form, within the context of software

development processes, has forced the Framework Processor design to

place a certain amount of structure on the form the IDEF3 diagrams may
take.

This is not to say that IDEF3 was modified to meet the needs of the
Framework Processor. Instead, this means that the Framework Processor

will require certain interpretations to be made of and certain structures to

exist within the IDEF3 diagrams that are part of the framework definition.

Each of these interpretations and structures have been added within the
syntax of IDEF3. Think of these conventions as analogous to a company's

programming standard for code development and documentation. With the
programming standard, the company forces a certain structure on the

form source code can take, but the structure falls within the syntax rules of

the programming language. In a like manner, the structures to be

discussed in the following sections fall within the syntax of IDEF3, but

makes the operation of the Framework Process less complex.

3.2.1.2.1 Simplifying Assumptions

While it was previously stated that no modifications have been made to the

IDEF3 method, certain changes in the interpretation of IDEF3 constructs

have been made. The semantics of IDEF3 diagrams have been defined in a

formalization of the IDEF3 method [Menzel 91]. For the most part, the

Framework Processor will adhere to the interpretations originally

prescribed for IDEF3 diagrams. However, in examining the informational
needs of the Framework Processor, it was noted that IDEF3 diagrams can

become too specific. The diagrams actually provide more information than
the Framework Processor is designed to handle.

Asynchronous versus Synchronous Junctions

Referring back to Figure 15, notice that IDEF3 Junctions can be denoted as

either Synchronous of Asynchronous. The purpose of this distinction is to
detail the temporal relationship that exists between the process branches

attached to the junction. A Synchronous junction specifies that the

branches should be initiated (for a fan-out junction) or terminated (for a

fan-in junction) at the same time while an Asynchronous junction specifies
that the branches can be initiated (or terminated) in any sequence.

Framework Definition Framework Processor Design

31

Within the context of the Framework Processor, there is no distinction

between a Synchronous and an Asynchronous junction. This relaxation in

the interpretation of the junctions results from the Framework Processor

only being involved in monitoring the progression of a system development

process. Consequently, at a fan-out junction the Framework Processor is
concerned with which branches should be activated and not however

whether they should be activated synchronously or asynchronously. This
information is encoded in the constraints within the elaboration of the fan-

out junctions. Similarly, the fan-in junctions signal the completion of a set

of branches based on the fan-in junction type without regard to whether

they completed synchronously or asynchronously.

Link Types

Now, referring back to Figure 14, notice the three different link types
defined by IDEF3. The Precedence link simply specifies a temporal

relationship between two IDEF3 elements (UOBs or Junctions). The Object

Flow link carries the same precedence relationship as the Precedence link,

but also specifies that specific objects move from one process to the next.

The Relation link represents some user-specified relationship between two

processes. In the present design, the Framework Processor is only capable

of handling precedence relationships. As a result, all links in the IDEF3

diagrams will be interpreted as Precedence links.

It should be noted that despite the fact that the Framework Processor does

not distinguish between the junction and link types, the IDEF3 diagrams

should still be prepared as if the Framework Process did actually

distinguish between them. Most importantly, doing this would provide a

more accurate description of the development process in the framework

definition. But also, distinguishing between the junction and link types

during the initial framework definition would not require modification to
the framework when the Framework Processor is enhanced to distinguish

between the junctions and the links.

3.2.1.2.1 Atomic versus Compound UOBs

A challenge with using IDEF3 to capture the development process centers

around the granularity of the IDEF3 process descriptions. Since IDEF3

supports decomposition of processes, it can be difficult to determine which

UOBs represent tasks that can be performed by members of the project team

and which UOBs are part of the description as an organizing element. In

some situations, the decomposition of a UOB may simply be a more detailed

description of a specific task to be performed by an individual while in other

situations the decomposition may represent several individual tasks to be

performed by several people.

Framework Processor Design Framework Definition

32

Miiii!_i___ Non leaf node or

ili!_i_i!ii_!i!!iiii__i_iii_iii:_iiiiiiiii!iiii!i::iiii::i::::::iii_C ompoun d UOB
.:iiiiiiiii[;iiiiiiiii!_:i_i_ i!iii!_!!!!!_!iiiiiiiii!!ii !_ii!iiiii_!_ili_ _ !!!i!ii;iiiiii::.

==_!_;i _ !_i_i_ii_i::_i_:_i_:ii_:_:_:_i_i;_;_i_;_;_;_

K M Q

L

Leaf node or atomic UOB

Figure 16. Atomic and Compound UOBs

To address these different situations, the Framework Processor will

distinguish between atomic and compound UOBs. Figure 16 illustrates the

relationship between these two types of UOBs. Compound UOBs are UOBs

for which there is a decomposition. Atomic UOBs are the lowest level UOBs

for which there is no decomposition. It is within these lowest, most detailed
UOBs that information about the actual task is to be represented. Every one

of these leaf UOBs must have an Elaboration Specification attached to

specify the access control and completion criteria for the task (see Section
3.2.1.2.3).

However, to address the situation where the decomposition represents a

detailed description of an individual task, the constraints specified on the

atomic UOBs in the decomposition can be rolled up to the parent compound

UOB. This rolling up of constraints could then allow the compound UOB to
be treated as an indivisible task in certain development situations where the

details of the decomposition are not required to complete the specified task.

The ability to roll up the constraints can also apply to the situation where

the decomposition represents several individual tasks. For example,

referring back to Figure 16, suppose that programmers have access to

UOBs M, N, and Q. Further, let analysts have access to K, L, M, and N and

testers have access to only Q. By rolling up all allowable access to the

Framework Definition Framework Processor Design

33

parent UOB, C, the Framework Processor can determine that only

programmers, analysts, and testers may have access to the C process.

3.2.1.2.3]DEF3 Elaboration Specification

To every Atomic UOB and Fan-out OR or XOR Junction, an Elaboration

Specification must be attached. The visualization for the Elaboration was

shown in Figure 13. With the Elaboration, the framework designer must

specify the facts and constraints that are important to that task (UOB) or

decision (Junction). To follow are the forms by which facts and constraints
will be expressed to the Framework Processor. The reader is referred to

Appendix B for a description of the grammar for the Elaboration

specification.

Facts

The Facts specified in an Elaboration for a task are defined to specify the

access control policies for the task represented by the UOB and to identify

any artifacts manipulated as part of the task. The general form for

specifying access control policies is:

(ACCESS-ROLE role-type [:ALL I :EXCEPT list I :ONLY list])

where role-type is the name of a user role and both lists are a set of

individuals that are members of the user role type. Both the user role type

and the users in the list must be defined in the Definition component of the

framework specification. This form describes the range of individuals who

may be allowed to access this UOB. The :ALL keyword allows anyone to

access the UOB. The :EXCEPT keyword allows the framework creator to

exclude individuals from the allowable group. The :OSLY keyword allows
only the listed users access.

The following are a few examples of the access-role form and their
interpretations:

(ACCESS-ROLE programmer :ALL) All programmers have

access.

(ACCESS-ROLE programmer :EXCEPT (tom)) All programmers

except tom.

(ACCESS-ROLE programmer :ONLY (tom joe)) Only the programmers
tom and joe.

(ACCESS-ROLE : ALL : ALL) Everyone.

For leaf nodes, there must be at least one, and possibly more, of these
access-role facts.

Framework DefinitionFramework Processor Design

34

Artifact access facts are also included within the facts section of the

Elaboration. These facts are used to specify what artifacts are to be

used/generated/modified/manipulated within the individual process nodes.

The general form for artifact access facts has the structure:

(ACCESS-ARTIFACT name :TOOLS list)

: METHODS list

: STATE state-of-artifact)

where name represents the artifact in question, the list associated with the

:TOOLS keyword represents the set of tools that can be used to manipulate the

artifact, the list associated with the :METHODS keyword represents the set of
methods that should be used in manipulating the artifact, and state-of-

artifact represents the state the desired artifact must be in before

manipulation during this activity. This state information will help insure

that the proper version of the artifact is used. As with the ACCESS-ROLE
form, elements of this form must have been defined in the Definition

Component. The artifact must be valid. The tools list and the methods list
must be subsets of the set of tools and the set of methods, respectively,

registered to for this artifact. Finally, the state must be one of the possible
states defined for the artifact.

The following is an example of the access-artifact form:

(ACCESS-ARTIFACT err-handler- source-code

:TOOLS (emacs)
: METHODS nil

:STATE initial)

This form states that the artifact to be accessed is the err-handler-source-

code artifact, in its initial state. The form also states that emacs should be

used to edit the artifact and no particular method is required.

Constraints

While the facts defined in the Elaboration define more of the situational

information about a task, constraints focus more on the dynamic,

procedural information about a task. The constraints are used to define the

means by which a process is completed and can specify special constraints

that must be satisfied during the performance of a task. For a detailed

discussion of the relation types that can be used in the constraint

statements, the reader is directed to Section 4.1.2. The remainder of this
section will be directed at discussing the broad categories of constraints that

will be found in the Elaboration specifications.

There are three general categories of constraints found in the framework

definition: (1) completion criteria constraints, (2) selection constraints, and

(3) general constraints. Completion criteria and general constraints are

Framework Definition Framework Processor Design

m

35

used to assist in the definition of UOBs while selection constraints capture
the decision making logic of Junctions.

Completion Criteria

The completion criteria is defined to establish what requirements must be

met in order for an activity to be considered complete. The mechanism for

defining a completion criteria is to simply define a relation, as shown
below:

(ARTIFACT design-document in-review)

This example states that the artifact x must reach the in-review state in

order for the task to complete. The stated relation can be any user-defined

or system defined relation, but for every atomic UOB, there must be one and

only one completion criteria statement in the Elaboration specification. The

previous example is somewhat trivial in that rarely will the completion

criteria be just a single relation. However, by using the logical relations

AND, OR, or ×oR, more complex relations can be specified. For example:

(AND (ARTIFACT design-document in-review)

(USER-SIGNO_ John-Doe))

This completion criteria states that the artifact x must be in review and that

the user John-Doe has signed off activity. The user-signoff relation

specifies that doej must give approval before this task can be considered

complete. More than likely, this will be a situation that occurs frequently in
the development process.

Selection Criteria

Whereas completion criteria are associated with UOBs, the selection

criteria are defined in the elaborations of fan-out junctions. The selection
criteria specifies the constraints that will determine which branches of the

process description will be activated. Since an AND junction specifies that all

branches will be activated, selection criteria must be specified for only oR or
xoR junctions. The form of the selection criteria will be a constraint based

on either the USER-SELECT or SELECT relations (see Section 4.1.2.2).

General Constraints

General constraints are supported to allow the framework designer to code

more complex situations into the framework definition. Through the use of
user-defined relations (see Section 4.1.2.3), the Framework Processor can
maintain and enforce a set of constraints that are much more detailed than

that specified by the IDEF3 diagrams. The IDEF3 diagrams are translated

into constraints that enforce the sequencing of tasks or activities. The

general constraints can be used to enforce more than sequencing

constraints on the development process.

Framework Processor Design Framework Definition

36

The following example should give insight as to how general constraints

could be used. Assume that the UOB for which the constraint is being

written is responsible for producing the system design document. The

following constraints could specify how that document is to be prepared.

(-> (OESIGN-PARXDIGS object-oriented)
(ARtIFACT-ACCESS design-document : METHOD (IDEF4)))

(-> (DES IGN-PARADIGM structured)

(ARTIFACT-ACCESS design-document :_THOD (DFD)))

The first constraint implies that, if at some time in the past, the design-
paradigm for this project was established to be object-oriented, then IDEF4

should be used to prepare the system design. If, however, a more

structured system design approach is chosen, the design should be

prepared with Data Flow Diagrams (DFD). So, this example demonstrates

that, though the framework is general enough to capture the overall
development process, the framework can be specialized to address certain

characteristics of specific types of projects. This specialization is achieved

through the specification of general constraints. The reader is directed to

Section 4.1.2 for more on specifying constraints.

Figure 17 illustrates a sample UOB elaboration specification for the CREATE-
ERR-HA_DLE_ UOB. In the facts section, the first access statement specifies

that all programmers are allowed access to this process. The second

statement specifies that only the user John-Doe serving in the role of tester

is allowed to participate in this activity. The next three facts are artifact
related and describe what artifacts are manipulated during this process.

Following the facts section of the elaboration is the constraints section. As

mentioned, each UOB elaboration must contain one completion condition

and the constraint specified in this example is one such constraint. This
constraint states that the artifacts err-handler-source-code and err-

handler-executable must reach their final state and the user John-Doe
must SIS_-OFF on these two artifacts in order for the CREATE-ERR-RANDLER--

SOURCE task to be completed. Finally, the elaboration can contain general
constraints. In this case, the constraint specifies that if John-Doe is out-of-

town, then Jane-Smith is the backup for John-Doe. While this diagram
relates the Elaboration to a UOB, the Elaboration for a Junction would be

very similar.

Framework Definition Framework Processor Design

- 37

Create [

err-handler [
source I

k

S _

Elaboration " -

UOB Label:Create err-handler source
UOB Reference Number: 435
..

FACTS:
(access-role programmer :all)

(access-role tester :only John-Doe)

(access-artifact err-handler-specification
:tools (emacs word)
:methods nil
:state fmal)

(access-artifact err-handler-source-code
:tools (emacs)
:methods nfl
:state initial)

(access-artifact err-handler-executable
:tools (debugger)
:methods nil
:state initial)

COMPLETION CONSTRAINT:
(and (artifact err-handler-source-code final)

(artifact err-handler-executable final)
(user-signoff err-handler-source-code John-Doe)
(user-signoff err-handler-executable John-Doe))

GENERAL CONSTRAINTS:
(-> (out-of-town John-Doe)

(backup John-Doe Jane Smith)

Figure 17. Example Elaboration

3.2.2 Situation Classification Matrix

The Situation Classification Matrix is a visualization mechanism for a

subset of the information represented in the development framework. The

framework designer must have the ability to define what the structure of

this matrix will be. This is accomplished using the following form:

Framework Processor Design Framework Definition

38

(DEFMATRIX : Rows list-of-strings

: coT,upms list-of-strings

:CONTENTS list-of-situations

where the first list-of-strings represents the names of the rows of the

matrix, the second list-of-strings represents the names of the columns of

the matrix, and list-of-situations represents the contents of the cells of the

matrix. Each of the situations in this list must match the name of a UOB in

the top level IDEF3 diagram of the process component of the framework. It

will be through these names that a connection between a cell in the matrix

and a process in the process descriptions will be made.

The following form provides an example and describes the matrix shown

previously in Figure 10, with the addition of row and column names:

(DEFMATRIX :Rows (_objectives" _domain" "business"

_information" "technology")
:COLUMNS (_data" _user" "function" _network"

_col5" "col6")
:CONTENTS (A nil B C D E

I F nil nil nil nil

J G nil nil nil nil

nil H nil nil nil nil

nil nil nil nil nil nil))

The resulting chart will be used by the Session Manager (see Section 4.6)
and gives the viewer a visual picture of the various situations that exist

within the development process. These development situations are

displayed in relation to one another with respect to the perspective and
focus of each situation. This serves to divide the _world" of software

development into pieces and helps the development team concentrate on

specific situations. This should alleviate some of the burden of trying to

understand the entire software system in order to conceptualize a part of
the system.

Framework Definition Framework Processor Design

m

39

4 Framework Processing Functionality

In Section 2.2.2, the architecture for the Framework Processor was

described at a functional level. The purpose of this section is to detail the

operation of the major functional components within this Framework

Processor architecture. To facilitate the discussion of the components, this

section has been divided into six subsections. The first subsection gives an

overview of constraint propagation. Accompanying this overview is a

discussion at the conceptual level on how the Framework Processor uses

the Constraint Propagator to control the system development process. This

discussion also includes a description of the relations used to build the

constraints that populate the knowledge base used by the Constraint
Propagator. The second subsection describes the three tiered validation

procedure applied by the Framework Processor to the framework. This

validation procedure is used to ensure the correct operation of the

Framework Processor during the control of a system development process.

The third subsection describes the process used by the Framework

Processor to convert the IDEF3 process descriptions - defined in the

framework - to constraints used by the Constraint Propagator. The fourth

subsection describes the operation of the Fact Base Manager which is the

Framework Processor component responsible for maintaining facts defined

in the elaborations of the IDEF3 process descriptions. The fifth subsection

describes the operation of the Framework Processor during the control of

the system development process. The final subsection centers around the

description of the Session Manager component of the Framework

processor. The Session Manager controls a direct interface between the
framework users and the Framework Processor.

4.1 Constraint Propagation

The term constraint propagation refers to a general class of techniques for

computing the effect of new information on existing knowledge base. Both

the new information and the knowledge base are represented as

constraints. Upon receiving a new piece of information, a constraint

propagation system makes deductions using the standard rules of predicate

logic. This new piece of information may cause contradictions within the

knowledge base. At that point, a constraint propagation system determines
the original assertions which lead to the contradiction. The constraint

propagation system presents the originator of the information with the set

of assertion leading to the contradiction. The originator selects the
assertion to be retracted (i.e., the piece of information to remove from the

known set of knowledge) thereby removing the contradiction from the
knowledge base maintained by the constraint propagation system.

The Framework Processor uses the concept of constraint propagation to
handle the effects of events during the system development process on the

framework. The remainder of this section focuses on describing the

Constraint Propagator component of the Framework Processor. The

Framework Processor Design Framework Processing Functionality

4O

discussion is divided into two parts. The first part presents a description of
the interaction between the Constraint Propagator component and the

Framework Manager. The second part defines the primitive relations used

to build the constraints managed by the Constraint Propagator.

4.1.1 Constraint Propagator Overview

The Framework Processor, via the Framework Manager, feeds the

Constraint Propagator new knowledge representing the progress of tasks

and artifacts. Using this new knowledge the Constraint Propagator makes
inferences based on the process description knowledge encoded in the form

of constraints. Figure 18 illustrates this interaction between the

Framework Manager and the Constraint Propagator.

Framework

Manager

Assertions

Deductions / Contradictions

Constraint

Propagator

Figure 18. Interaction of the Framework Manager and the

Constraint Propagator

Notice the types of information being passed along the lines of

communication. The Framework Manager informs the Constraint
Propagator about a set of assertions which it receives by way of the Platform

Interface Manager from the Integration Platform. These assertions

represent changes in the state of the development process. The Constraint

Propagator uses these assertions and deduces any new information it can

from these assertions. The Constraint Propagator then reports back to the

Framework Manager the newly deduced information about the current

state of the system development process. If these assertions lead to a

contradiction, the Constraint Propagator reports to the Framework

Manager that an inconsistent state has been reached. The Framework

Manager must then take action to re-establish a consistent state. This

action always results in the retraction of some assertion. Therefore, the
Constraint Propagator isolates those assertions which lead to the

contradiction, and presents them to the Framework Manager. The
Framework Manager notifies the framework administrator. The

framework administrator selects the appropriate assertion to be retracted.

Having been restored to a consistent state, the Constraint Propagator

continues processing. In this way, the Constraint Propagator uses

information encoded in the form of constraints along with the assertions

made by the Integration Platform to monitor and control the system
development process.

Framework Processing Functionality Framework Processor Design

- 41

4.1.2 Constraint Relation Types

The constraint relation syntax used by the Framework Processor is a Lisp-

like syntax. These relations are be used to build up complex constraints for

expressing development process information in the framework definition.

These relations can be divided into three categories. These categories are:

1) logical relations,

2) trigger relations, and
3) user-defined relations.

In the following subsections, each category of constraint relations is

discussed by (1) describing the syntax for the relation and (2) explaining the
semantics associated with the constraint relation.

4.1.2.1 Logical Relations

The logical relations consist of three connective operators, a negation

operator, and a conditional operator. The connective operators have the

following form:

(op exprl expr2 ... exprn)

where op is one of the connective operators (e.g., _D, OR, and xoR) and exprl,

expr2, ..., exprn are boolean expressions. The connective operators are a

boolean value. The ASp relation is true if and only if all of the boolean

expressions are true. The oR relation is true if at least one of the

expressions are true. The xoR relation is true if one and only one expression

is true and the remaining are false.

The negation relation has the following form:

(No_ expr)

where expr is a boolean expression. The negation operator simply toggles

the value of the boolean expression, that is, if the boolean expression is true,

then the negation relation will return false, and vice versa.

The conditional relation is the same as the implication operator used in

predicate logic. The conditional relation has the following form:

(-> exprl expr2)

where exprl and expr2 are boolean expressions. Exprl represents the

antecedent, and expr2 represents the consequent. If the antecedent is true,

then expr2 is asserted to be true by the rule of inference known as modus

ponens. If the consequent is false, then the antecedent is asserted to be

false by the rule of inference known as modus tolens. For the cases where

Framework Processor Design Framework Processing Functionality

2

either the antecedent is false or the consequent is true, no additional
inferences can be made.

4.1.2.2 Triggering Relations

Five triggering relations have currently been identified. They include
START, DONE, SELECT, USER-SELECT_ and USER-S_GN-O_F. These five relations

along with the logical relations are used to specify the completion criteria

for a leaf UOB. The START relation is used by the framework processor to
indicate that a task has been started. The START relation has the following
form:

(START A)

where A is a unique identifier representing either a unit of behavior (UOB)

or a junction. For the framework processor to determine whether task A

has been started, it queries the constraint propagator's knowledge base to
determine if (START A) is true. If so, the task A has been started. However,

the task may have already been completed. To determine this, the

framework processor must determine if (DONE A) is true. The DONE relation
indicates whether a task has completed and has the same form as the START

relation. Table 1 shows how to interpret the resulting values based on a

query for both the START and DOSE relation for a given task.

Start Relation Done Relation Interpretation

nil or false N/A task never started

true nil or false task started, but has
not finished

true true task has started and

completed

Table 1. Interpretation of Start/Done Relations

The SELECT relation allows the framework designer to indicate which of the
competing fan-out branches to actually perform in the case of a fan-out OR

or XOR junction. For example, assume that only task A1 should be

performed under some certain conditions (see Figure 18), then one of the

constraints in the elaboration for the fan-out OR junction would specify:

(-> expr (SELECT A1))

where expr is a boolean expression representing the condition that must be

met for task A1 to be selected, that is, for task A1 to be initiated. This

example is some what simplified in that only one branch is selected. In

other situation multiple branches could be selected, resulting in more

complex forms.

Framework Processing Functionality Framework Processor Design

- 43

A°II

A1,

Figure 19. Example of a Select Relation

The SELECT relation allows the framework designer to statically encode

which branch of a fan-out OR or XOR junction to activate. The USER-SELECT

relation provides a means for the framework designer to specify that the

selection of the tasks to activate at the fan-out OR or XOR junction is to be

specified dynamically at run-time (i.e., to be specified during the actual

controlling of a system development process). The USER-SELECT relation has

the following form:

(USER-SELECT rnin max consto constl ... constn)

The min and max indicate the number of tasks that can be selected. For an

XOR fan-out junction min and max can only be one. Consto, constl, ...,

constn are additional constraints used to specify any interrelationships that

might exist between different combinations of task selections. These are

used to constrain the framework user in the selection of acceptable branch

combinations. Using the diagram in Figure 19, if the framework designer
wanted to encode the fact that one or two branches should be pursued at the

fan-out junction with the additional constraint that if task A1 is selected

then task A2 should not be selected, the following USER-SELECT relation

would be specified:

(USER-SELECT 1 2 (AND (SELECT A1) (NOT (SELECT A2))))

The USER-SIGN-OFF relation is used to signify those situations were an

individual must give his/her approval before a task is considered
completed. The form of this relation is:

(USER-SIGN-OFF accesso access1 ... accessn)

Framework Processing FunctionalityFramework Processor Design

44

where accesso, access1, ..., accessn is either a user role (e.g., designer,

programmer, etc.) or a specific individual. Any individual with the

appropriate access privileges - based on the information in the USER-SIGN-

Or_ _.ATIOS -- can sign-off on the given task.

4.1.2.3 User-defined Relations

The Framework Processor provides a means for expressing user-defined
relations. The user-defined relations allow the framework designer to

define new relations that are needed to encode a particular system

development process. The user-defined relations are atomic in nature, that

is, the user-defined relations as a whole can be asserted to be true or false.

In contrast to the logical relations and the trigger relations, the user-
defined relations do not elicit any special behavior from the Constraint

Propagator. The user-defined relations have the form:

(rel valo vall ... valn)

where rel is the name of a user-defined relation and valo, vall, valn are

the values associated with this relation.

Using user-defined relations, the framework designer can develop a

process description that can "configure" itself. That is, the decisions made

during tasks early in the development process can effect how the later tasks
are accomplished. For example, if one of the initial tasks is to define the

software paradigm to use, then the design documents produced - for the

software during later tasks - must use the appropriate design paradigm.
To encode this information, the framework designer could introduce a

user-defined relations of the form:

(DESIGN-PARADIGM par)

where par is the name of a design paradigm. The task assigned to the job of

selecting the design paradigm could then assert:

(DESICN-PARADIGM object-oriented)

As part of the elaboration of the task to produce the design documents, the

following form would appear:

(-> (DESI_N-PARm_I_M object-oriented)

(ARTIFACT-ACCESS design-document :METHOD (IDEF4)))

Thus, the task assigned to selecting the design paradigm has affected tasks

performed later in the development process. In this way, the framework

designer can encode the dynamic relationships between tasks.

Framework Processing Functionality Framework Processor Design

45

4.2 Framework Validation

In order to ensure the proper operation of the Framework Processor and its

Constraint Propagator component, a validation test must be performed on

the IDEF3 description representing the site specific system development

process framework. During this validation process, the Framework

Processor attempts to verify that the constraints represented by the process

descriptions will not produce a contradiction in the Constraint Propagator.
Contradictions arise from two sources: (1) invalid IDEF3 syntax or (2)

invalid/conflicting elaboration constraints.

The validation process performs the same operation as a compiler. First,

the Framework Processor parses the IDEF3 description to determine

whether the box and arrow part of the IDEF3 description conforms to the

syntax rules specified in the IDEF3 formalization [Menzel 91]. If syntax
violations are encountered, the validation procedure will guide the

framework designer in resolving these violations. Second, the Framework

Processor converts the box and arrow part of the IDEF3 description into a
collection of constraints. These constraints, along with any additional

constraints specified in the elaborations of UOBs or junctions, are loaded

into knowledge bases maintained by the Framework Processor. At this

point, the Constraint Propagator determines whether any contradictions
have arisen during this conversion process. If a contradiction exists, the

Constraint Propagator determines the set of constraints which produced
the contradiction. From this set of constraints, the framework designer

selects the constraint to be retracted. Upon retraction, the Constraint

Propagator checks again to determine whether any contradictions exist in

the reduced set of constraints. This process continues until all
contradictions have been eliminated.

Although the IDEF3 description has been 'compiled', it still has not been

determined whether the 'program' will function properly. The approach

used by the Framework Processor is to simulate the system development

process represented by a given framework to determine whether any
contradictions occur. However, it is impractical to enumerate all of the

execution paths or to analytically verify the IDEF3 description. To overcome
this problem, the Framework Processor will simulate only a selected subset

of execution paths. Since contradictions can still occur during the actual

controlling of a system development process, the Framework Processor
must provide an interactive means of dynamically modifying the
framework to correct this situation.

4.2.1 IDEF3 Syntax Validation

During the syntax validation phase, the framework processor parses the

site specific system development process framework to determine whether

the IDEF3 description conforms to the formalization for the IDEF3 method.

Although the modeling tool used to produce the description should have its

own syntax validation procedure, the framework processor cannot rely on

Framework Processing FunctionalityFramework Processor Design

46

this fact. Therefore, the framework processor must perform its own syntax

analysis to verify the conformance of the framework with the established

IDEF3 formalization. The following is a partial list of syntax rules which

must be enforced during the validation process:

1) Only one prediagram allowed per decomposition. A

prediagram is a collection of connected nodes.
2) A scenario and a decomposition can have only one

lef_nost point. A leftmost point of a prediagram is a UOB

or junction that does not have any entering links.

3) A scenario can have multiple rightmost points, but a

decomposition can have only one rightmost point. A

rightmost point of a prediagram is a UOB or junction that

does not have any existing links.
4) Every fan-in junction must have a corresponding fan-out

junction.
5) A fan-out OR junction cannot be matched with a fan-in

AND junction.
6) A fan-out AND junction cannot be matched with a fan-in

XOR junction.

7) A fan-out XOR junction cannot be matched with a fan-in

AND junction.

8) A loop back cannot occur in the scope of a fan-in junction.

The scope of a fan-in junction is defined to be all of the
nodes between the fan-in junction and its matching fan-

out junction.

The framework processor will be designed around the IDEF3 formalization
contained in [Menzel 91]. Thus, the reader is referred to that technical

report for further information on the IDEF3 syntax.

4.2.2 Framework Semantic Validation

The semantic validation phase occurs at two levels. The first level is the

instantiation validation, and its purpose is to determine whether any

contradictions occur upon converting the IDEF3 description of a framework
into constraints. The second level is the simulation validation, and its

purpose is to simulate the actual controlling of a system development

process to determine whether any run-time contradictions occur. Each of
these two semantic validation levels will be described in the following

sections.

4.2.2.1 Instantiation Validation

The instantiation validation phase determines whether contradictions have

occurred during the conversion of the IDEF3 description to constraints.
These contradictions are caused by the constraints specified in the
elaborations. The elaboration constraints are free-form, that is, by

following a few simple syntax rules, the framework designer can generate

Framework Processing Functionality Framework Processor Design

_ 47

any kind of constraint. This flexibility has its advantages and

disadvantages. An advantage is the expressive power provided to the

framework designer to customize a framework for a particular system

development process. A disadvantage is that it allows the framework
designer to paint themselves into a corner by specifying inadvertently
constraints that contradict each other. The contradictions that are

identified during this instantiation validation are of the form:

a

(NOT a)

where a is some well-formed formula built from the constraint relations.

Clearly, when the propositions are stated in this fashion, there exists a

contradiction. However, two conditions hide the identification of these

contradictions from the framework designer. First, a can be any complex

formula using any number of connectives (e.g., AND, OR, and, XOR). Second, a

and (NOT a) can be specified in any elaboration within a system development

process description. It is the job of the instantiation validation to catch
these obvious semantic errors.

4.2.2.2 Simulation Validation

The simulation validation is the final phase in the validation process. This

phase of validation is analogous to the testing phase in software

development. In program development, this phase tends to be a long and

time consuming effort. As in software testing, it is impractical to

enumerate all of the execution paths, and currently no automatic

verification technique exists. For these reasons, the Framework Processor

will adopt a simulation approach for this validation phase. The framework

processor will simulate a set of different possible execution paths to
determine whether any contradictions arise during the simulated control of

a system development process.

Contradictions that arise during execution are produced by constraints

with the following general form:

(->fo c)
(->f l (,oTc))

where fo, fl, and c are well-formed formulas built from the constraint

relations. There are two specializations of this form. The first

specialization is when fo is equivalent to fl. This specialization leads to the

following form:

(-> a c)

(-> a (_OT c))

This specialization of the general form illustrates the fact that during

execution if the proposition a is asserted to be true, an immediate

Framework Processor Design Framework Processing Functionality

w

48

contradiction will arise in the Constraint Propagator. This contradiction is

caused by c and (not c) both having the same truth value. This

specialization, where fo is equivalent to fl, always indicates a contradiction.

The second specialization is when fo is not equivalent to fl. This

specialization leads to the following form:

(-> a c)

(-> b (sot c))

In this case, if the proposition a and b are asserted to be true, a
contradiction will arise in the Constraint Propagator. Unlike the first

specialization which always indicates an error in the constraint

specification, the second specialization does not necessarily indicate a
contradiction within the context of the framework. It may be the case that

within the given framework it is impossible for a and b to be true.

Therefore, even though these constraints have the potential for producing a
contradiction, it does not necessarily indicate that a contradiction will

occur.

In summary, the simulation validation phase attempts to find the

contradictions that might arise during the actual controlling of a system

development process. Because IDEF3 allows loop backs, it is impractical to

enumerate all of the execution paths. Since no analytical method exists for

verifying the constraints produced by an IDEF3 description are
contradiction-free, an alternate method of verification had to be developed.

The approach taken by the framework processor during this phase is to
simulate a set of execution paths. However, just like software testing, this

simulation approach to semantic validation will not be able to find all of the

contradictions. Therefore, the Framework Processor must be instilled with

the capability of handling contradictions during execution which have

eluded detection during the validation process. This capability is needed

even if the problem identified above was solved.

4.3 Constraint Generation

This section describes what constraints are produced by the IDEF3

description of a framework. Two classes of constraints are produced

during this instantiation phase. The first class of constraints control the

activation of successive tasks based upon the completion of their

predecessors. These constraints are called trigger constraints and are

produced by the links in the IDEF3 description. The second class of

constraints encode the completion conditions that must be met in order for
a task to be considered completed. These constraints are specified in the

elaborations of the UOBs and junctions. Each class of constraints will be

presented in more detail in the following sections.

Framework Processing Functionality Framework Processor Design

49

4.3.1 Trigger�Link Constraints

Each link in a diagram represents a trigger constraint. In order to
expedite the discussion of converting links into constraints, the links have
been divided into three categories: basic, fan-in, and fan-out as shown in

Figure 20.

v

a) Basic Links

J

J .

j •

I

k._ __,,.

b) Fan-out Links

I

J

J

v

c) Fan-in Links

Figure 20. Categories of Links

mb._ bL_

A link is categorized in this scheme without regard to the type of link (e.g.,
relational, precedence, and object flow). Each link category produces a
different set of constraints and will be described in the following sections.

Framework Processor Design Framework Processing Functionality

5O

4.3.1.1 Basic Links

A basic link in a diagram represents a trigger constraint between (1) two
UOBs, (2) a UOB and a fan-out junction, or (3) a fan-in junction and a UOB.

For example, the completion of the task "Examine Requirements" triggers

the start of the task "Decompose Solution" as shown in Figure 21.

IExamine I _.J Decompose I

Requirements _'] Solution I

Figure 21. Example of a Basic Link

The trigger constraint produced by this example is:

(-> (DONE "Examine Requirements")
(START "Decompose Solution"))

Thus, in the normal case a basic link produces the following constraint:

(-> (DONE A) (START B))

where A is the label of the box that is at the start of the basic link, and B is

the label of the box at the end of the basic link. To allow for loop backs in an

IDEF3 description, the syntax allows a box to have one or more basic links

entering it and no other links entering. A UOB which has multiple basic

links entering it is represented by the following general basic link
constraint:

(-> (OR (DONE AO) (DONE A1) ... (DONE An))

(START B))

where A O, A 1, ..., A n are the labels of the boxes that start the basic links

ending at the box labeled B. For example, the "Examine Requirements"

task in Figure 22 has two basic links entering it.

The trigger constraint for the "Examine Requirements" task is:

(-> (OR (DONE "Requirements Definition")
(DONE "Solution Limitations"))

(START "Examine Requirements"))

Thus, the completion of either the "Requirements Definition" task or the
"Solution Limitations" task signals the activation of the "Start

Requirements" task.

Framework Processing Functionality Framework Processor Design

51

i
Req reoentsUExamineU Oecompose

40 [AI2]] 41 [A211] [42 Im121 --

Solution j

Proposed

Solution

Structures

Figure 22. Multiple Entering Basic Links

4.3.1.2 Fan-in Links

A fan-in link represents a relationship between a set of boxes (e.g., UOBs or

other fan-in junctions) and a fan-in junction. The constraint generated by

the fan-in link depends on the junction type. Whether a junction is

synchronous or asynchronous has no bearing on the constraint generated.

The general form of the constraint produced by a fan-in link is as follows:

(-> (op (DONE A O) (DONE A 1) ... (DONE An)))

(START B)

where op is the junction type (e.g., AND, OR, and, XOR), A O, A 1, ..., A n are the

unique names of the boxes at the start of the fan-in link, and B is the unique

named associated with the fan-in AND junction. For example, the "Assess

Technology Options" task and the "Evaluate Requirements" task must be

completed before the fan-in AND junction can be activated as shown in

Figure 23.

Assess]

Technology
Options I I

21 [A121 i _i_

Evaluate [_J

Requirements V_

29 [A125

Figure 23. Example of a Fan-in Link

Framework Processor Design Framework Processing Functionality

52

The trigger constraint for this example is:

(-> (AND (DONE ``Assess Technology Options")

(DONE "Evaluate Requirements"))
(START ``AND123"))

This example illustrates the fact that each junction in an IDEF3 description

must have a unique identifier to allow the framework designer to reference

junctions within constraints.

4.3.1.3 Fan-out Links

A fan-out link represents a relationship between a junction and a set of
boxes. The fan-out link constraints are generated based on the associated

fan-out junction type without regard to whether the junction is

synchronous or asynchronous.

The general form of the trigger constraint representing a fan-out AND

junction is as follows:

(-> (DOSE A)

(m_ (START B O) (START B 1) ... (STm_T Bn)))

where A is the unique name associated with the fan-out junction and B O,

B 1, ..., B n are the unique names of the boxes at the end of the fan-out link.

The fan-out OR or XOR junction instantiation is complicated by the fact that

something must specify which branch of the fan-out should be pursued.

Two techniques for encoding the selection have been provided to the

framework designer. One technique allows the framework designer to

specify the constraints that must be satisfied for a branch to be selected, and

the other technique is simply a form that queries an authorized person for

the set of branches to be pursued. The number of branches that may be

selected depends on the junction type. The OR junction type allows one or
more branches to be selected, and the XOR junction type allows one and

only one branch to be selected.

For the OR and XOR junction types, each branch in the fan-out produces

the following form:

(-> (AND (DONE A) (SELECT B))

(SWART B))

where A is the unique identifier for the fan-out junction, and B is the

unique identifier representing the destination of a branch. The XOR

junction type produces an additional constraint to restrict the selection of

branches to one and only one branch. This additional constraint has the
form:

Framework Processing Functionality Framework Processor Design

a

53

(xoR (SELECT BO) (SELECT B1) ... (SELECT Bn))

where BO, B1, ..., Bn are the unique identifiers representing the destinations
of the fan-out branches.

Solution

Limitations

Proposed

- Solution
Structures

 441

Figure 24. Example of a Fan-out Link

An illustration of a fan-out link originating from a fan-out XOR junction is

given in Figure 24. This fan-out link produces two branch constraints plus
the additional XOR constraint. These three constraints are:

(-> (AND (DONE "XOR234")

(SELECT "Solution Limitations"))

(START "Solution Limitations"))

(-> (_D (DONE "XOR234")

(SELECT "Proposed Solution Structures"))
(START "Proposed Solution Structures"))

(XOR (SELECT "Solution Limitations")

(SELECT "Proposed Solution Structures"))

These constraints only encoded the triggering information, that is, the

information necessary to signal to the next process that its predecessor has

finished. The actual selection of the competing branches is encoded in the
elaboration of the junction and will be discussed in the next section.

4.3.2 Box constraints

The crux of the Framework Processor in the controlling of the system

development process is determining the completion of a task. To signal the

completion of a task, the framework designer can choose from one of two

techniques. The first and simplest technique is to have the framework user

tell the Framework Processor when a task is completed. The second
technique is to encode the completion criteria into the constraints in the
elaborations and have the Framework Processor, via communication with

the Integration Platform, determine automatically upon an artifact's

check-in when a task has been completed. This section describes how the

Framework Processor Design Framework Processing Functionality

54

elaborations for the UOBs and junctions are converted into constraints

maintained by the Constraint Propagator.

4.3.2.1 UOBs

The constraint information for the elaborations of the UOBs have been

partitioned into two parts. The first part of the constraint information is

used to encode the completion criteria for the task, and the other is a set of
general constraints that exist for the task.

Each UOB produces the following completion constraint:

(-> (AND (START A)

comp)
(DONE A))

where A is the unique identifier for the UOB under consideration and comp

is the user specified completion criteria for the UOB. Each leaf UOB should

have a completion criteria specified for it, otherwise the completion criteria

for the UOB simply reduces to the UOB having been started.

A UOB that has an objective decomposition should not specify the
completion criteria. Instead two bridge constraints are produced in place of

the completion criteria. One is an initiation bridge constraint, and the

other is a termination bridge constraint. The initiation bridge constraint

has the following form:

(-> (START A) (START al))

where A is the unique identifier of the parent UOB and al is the unique

identifier of the leftmost point in the objective decomposition. This bridge

constraint states that the initiation of the parent UOB signals the initiation

of the objective decomposition.

The termination bridge constraint works in a similar fashion to the

initiation bridge constraint. This constraint indicates that the completion

of the objective decomposition process also signals the completion of the

parent UOB. Therefore, the general form of the termination bridge
constraint is:

(-> (DONE ar) (DONE A))

where ar is the unique identifier of the rightmost point in the objective

decomposition and A is the unique name of the parent UOB.

4.3.2.2 Junctions

The majority of the logic for the junctions has been encoded by the fan-in or

fan-out link associated with a particular junction. The only information

Framework Processing Functionality Framework Processor Design

w

55

that must be specified by the constraints generated by the fan-out OR/XOR

junction is the selection of the particular branches to pursue. To facilitate

this selection process, these two fan-out junction types have been
augmented with an identical elaboration structure to that of a UOB.

All junctions produce the following bridge constraint:

(-> (START A) (DOSE A))

where A is the unique identifier for the junction. This bridge constraints

states that the completion criteria for the junction is simply the initiation of
that junction.

Since all junctions including the fan-out OR/XOR junctions produce the

identical bridge constraints as represented previously, the framework

designer is only responsible for specifying the selection criteria in the

general constraint section of the junction's elaboration. Each of these

constraints will have one of the three following general form:

(-> (AND (START A)

cond)

(SELECT AO)

(-> (m_D (START A)

cond)

(ASD (SELECT AO) (SELECT A1) ... (SELECT An))

(-> (ASD (START A)

cond)

(USER-SELECT rain max consto constl ... constn)

The cond is some selection criteria for a given branch, A is the unique

identifier representing the fan-out junction, AO, A1, ..., An are the unique
identifiers representing the destination boxes of a branch. The min and

max indicate the number of tasks that can be selected. For an XOR fan-out

junction min and max can only be one. Consto, constl, ..., constn are

additional constraints used to specify any interdependencies that might
exist between different combinations of task selections. Notice the first form

is merely a specialization of the second form. When the third form is used,

the access information contained in the elaboration specifies the group of
people with the appropriate access privileges that may perform the USER-
SELECT operation.

4.4 Fact Base Management

While constraints play a major part in the management of the procedural

nature of the development process, considerable information is represented
outside the scope of the Constraint Propagator. This information is used to

control user access to activities, artifacts, tools, and methods. The Fact

Framework Processor Design Framework Processing Functionality

6

Base Manager is the component of the Framework Processor that manages
this information.

The information found in the fact base comes from the framework

defimtion and is extracted from the fact statements found in the Elaboration

specifications of UOBs (see Section 3.2.1.2.3). During this extraction

process, the facts are passed through the Validator and then stored in the
fact base. Once there, the information is available to the Fact Base

Manager to assist in responding to access queries.

These queries are really the heart of the functionality provided by the Fact

Base Manager. In the development framework, the framework designer
has specified what users should have access to certain tasks and artifacts.

During interaction with the Framework Processors, users find themselves

working in many different contexts within the development effort (i.e., they

work on many different tasks during the same session). It is up to the
Framework Processor to detect these context switches and to determine if

the user is authorized to make the switch. The way the Framework

Processor accomplishes this is by constructing a statement that represents

the user's new context and querying the Fact Base Manager to see if that

context statement is valid for that user. The response from the Fact Base
Manager will determine whether the Framework Manager will allow the
user to enter the new context.

As this discussion has shown, the Fact Base Manager, in support of the

Framework Manager, stores and retrieves user authorization and access

information. In doing so, the Fact Base Manager serves as a nice

complement to the dynamic nature of the Constraint Propagator by

providing support for managing and accessing static framework
information.

4.5 Development Process Control

A conceptual view of the Framework Manager operation has already been

presented. This section focuses on detailing the complex interactions that

occur during the controlling of a system development process as
highlighted in Figure 25.

Framework Processing Functionality Framework Processor Design

57

users I Iiiiiiii!i iiiiiiii!! il]I !

Operations/ _ _ / /Notifications

Requests _ __ //

Deductions/ // ___ncoContradictions/ / nsistencies

//Assertions Facts_4_ _

Figure 25. Development Process Control

For the sake of discussion, assume that an event notification has just been

received by the Framework Manager from the Integration Platform via the
Platform Interface Manager. The information contained in an event
notification is illustrated in Table 2.

Project: CAD Modeler

Task: Requirements Definition

User: John Smith

User role: Analyst

Assertion: (ARTIFACT "Requirements Document" RELEASED)

Table 2. Example of an Event Notification

Upon receipt of an event notification, the Framework Manager performs a

two-tiered event validation process to determine the integrity of the event
notification. The first validation step involves querying the fact base via the

Fact Base Manager to determine for the given three tuple <project, task,

user role> whether the specified user has the appropriate access privileges.

If the access privileges are invalid, the event notification is logged as
invalid and the appropriate framework administrators are notified.

Otherwise, the second validation step is performed. This step involves

matching the given event assertion against the valid assertions in the fact

Framework Processor Design Framework Processing Functionality

58

base. If an inconsistency exists the user is notified of the situation along
with the framework administrators.

After passing event validation, the event assertion is passed to the
Constraint Propagator by the Framework Manager. At this point, the
Constraint Propagator makes deductions based on this new piece of
information. For example, this new assertion could represent the final

completion criteria for a task. Thus, the Constraint Propagator would
deduce the completion of one task possibly asserting the activation of
another task.

i@ii
If !_ii!i_!!!!!!_!!!!!!!!!!!!!!!

......................::_:_:_:_:_:::::::::::::::::::::::::::::::_:_:_:_:_:_:_:_:_:_:_,_ I_::_::::_:::?_::_::_::¢::_::__:_:_:_:_:q

4o l A12 I liiiiiii¢?_ii_iiiiiiiiiii:,ii_iiiiiiiiiti@_::_i_:,_:,_:,¢i_12q---- _ P_u_o_a
Structures

__ I

Figure 26. Loop Back Retractions

Two special case assertions must be handled by the Constraint Propagator
and the Framework Manager, respectively. The first special case is caused

by loop backs in an IDEF3 description and is handled by the Constraint
Propagator. The loop back causes the Constraint Propagator to reassert the
activation of a task that has already been activated. In fact, the task is still

considered completed by the Constraint Propagator. To force the
framework user to redo a task, the Constraint Propagator must retract any
assertions made by the tasks occurring from the loop back point. For

example, any assertion made during the "Examine Requirements" task,
the "Decompose Solution" task, the "XOR" junction, and the "Solution
Limitations" task would have to be retracted by the Constraint Propagator

as highlighted in Figure 26.

A potential problem in retracting information from previous iterations to
allow for new iterations is that the history of the development process

represented by assertions made during the previous iterations is lost.
Another possible approach to this problem is to reinstantiate (i.e., recasting
the elements in the process description into new constraints) the
development process. With this approach, though, it is difficult to
determine how much of the development process to reinstantiate and to

decide what assertions from previous instantiations carry over to the new
instantiation. The difficulties in both approaches result directly from the

complexities introduced by loop backs in IDEF3 descriptions. The
retraction approach represents the initial attempt to be made at addressing

Framework Processing Functionality Framework Processor Design

59

these difficulties. However, the second approach was introduced to show a

potential alternative in case the retraction based solution proves to be
insufficient for the needs of the Framework Processor.

The other special case occurs when the Constraint Propagator asserts a

USER-SELECT relation. Upon making a USER-SELECT assertion, the Constraint

Propagator must inform the Framework Manager of the assertion. The

Framework Manager uses the information specified in the USER-SELECT

relation to query a user with the appropriate access privileges, as specified

in the access privileges in the associated elaboration, for the selection of the

branches to pursue following a fan-out junction. After acquiring the

information, the Framework Processor makes a series of SELECT relation

assertions based on the user supplied information.

4.6 Session Management

The Session Manager component of the Framework Processor is
responsible for managing the interaction between users and the

Framework Manager. Three major classes of users have been identified

and appropriate interfaces and functions will have to be provided by the

Session Manager to support these users. The following sections will

describe the interactions and functions that will be supported by the

Framework Processor concerning each of these user classes.

4.6.1 Project Team Members

Project Team Members represent the largest class of users of the

Framework Processor. These users are the people that perform the tasks

and duties required to produce the software systems. In essence, these are

the people being managed by the Framework Processor. The following
subsections will describe how these users will interact with the Framework

Processor and how the Framework Processor will aid them in performing
their tasks.

4.6.1.1 Logging Into the Framework Processor

When the user begins a session on the Framework Programmable

Platform, the user must provide information to the Platform so that the

system will know in which context the user intends to operate. As a result,

for a user to attempt to login, the following information will have to be

specified:

1)
2)
3)
4)

the user's system id;

the user's password;

the Project on which the user intends to work; and
the User Role under which the user intends to work.

Framework Processor Design Framework Processing Functionality

6O

Once this information has been provided, the Session Manager will begin

the authorization process. This involves determining if this user, serving

in the specified role, has the authority to work on the specified project. This

authorization check is performed by comparing the information provided by

the user against the user profile information (see Section 3.1.6) maintained

by the framework. If the comparison succeeds, the user is granted access
to the system; if not, the user is asked to change the information or exit the

system.

This authorization procedure is really no different than the procedures on

any other computer system. The additional information regarding the user

role and project are required to reduce the possibility of confusion by the

user. It is possible that one user might serve in several different roles for a

specific project or might serve the same role, but for many different

projects. By requiring the user to specify the selected information initially,
the system is establishing the context in which the user will be operating.

This characteristic should prevent the user from making unintentional

mistakes during the development effort.

4.6.1.2 Project Visualization

When the authorization procedure is completed successfully, the

Framework Processor will present the user with screens that will display

the status of the project under which the user logged in. These displays are

intended to provide visual clues regarding the status of the project and to

guide the user to where current work activities should proceed.

Figure 27 presents a display of the Situation Classification Framework
chart. Each of the cells are shaded to indicate a status or access

authorization for that cell. Notice that certain cells are shaded black. This

indicates that the situation represented by that cell never arises during the

development process at this organization or is not used for this particular

project. This fact is represented in the top level process description by the
fact that those cells do not occur in the process description. On the other

hand, the white cells represent those cells that the user, based on the role

type, is authorized to participate in and those cells can be examined more

closely by the user. The other cells are inaccessible to the user as they have

already been completed, the user does not have the proper authorization, or
both.

Framework Processing Functionality Framework Processor Design

- 61

Objective/

Scope

Domain

Model

Model

of the

Business

Model

of the

Information

System

Technology
Model

Detailed

Represen-
tations

Data

iiiiiiiiiiii!ilili_iiii_ili_i_i!i!i_ili_._iEi_ili_

User Function Network

D Completed _ Unauthorized, but Completed

Unauthorized Not Included in This Project

D Authorized, but Not Completed

Figure 27. Interface for the Situation Classification Framework

While the interface for the Situation Classification Framework shows the

cells where the user can participate, the interface does not indicate the

sequence in which those cells should be examined. For this, the System

Development Framework must be accessed. The display shown in Figure

28 shows how a diagram in the System Development Framework will

appear to the user. Again, shading is used to provide visual cues as to the
state of a particular activity. Those activities that are not shaded are the

activities to which the user has complete access.

It should be noted that, while this interface prohibits users from examining

certain cells or activities based on a user's role type, it will be possible for

the user to browse the entire framework to provide the context for activities

in which the user is involved. This browsing capability can be provided by

Framework Processor Design Framework Processing Functionality

62

defining a special project or role types that supports unlimited access
authority. However, there will be no way for the user, while assuming one

of these dummy roles, to actually perform any task associated with the

project. The dummy project or role types exist only to serve as a browsing
mechanism for the entire process development framework. In this respect,

the dummy project or role types could serve as the means for training new

team members in the development process of the organization.

• ." iiiiii{iiii:!:ii}!i{ii{iiiii{iiiiiiiiiiiiiiiiii{{i!iii!i

oal

istrib_tion

rganization

bjecti_es

Completed

7 Unauthorized

Unauthorized, but Completed

[_] Authorized, but Not Completed

Figure 28. Interface for the System Development Framework

The construction of these interface displays will require the Session

Manager to interact closely with the Framework Manager. The reason for

this is that these displays represent the current state of a development

project. This is precisely the information that the Framework Manager

monitors through the constraint and fact base. Essentially, what will

happen will be a parse of the process description provided by the
framework. For each cell or activity in the framework, a two step

authorization / status check will be performed. For status purposes, the

two steps are independent of each other and no specific processing order is

required. One step will be a comparison against the fact base to determine
if the user is authorized to access a particular cell or process activity. The

user-id and user role of the user will be compared against the access

privileges defined for that cell or task (see Section 3.2.1.2.3). This

comparison will result in allowing or disallowing access to the contents of

the cell or activity.

The other step in this process involves determining the state of the cell or
activity in question (i.e., determining whether the activity has been

completed or not). This is accomplished by querying the constraint

propagator for the status of the the particular activity. Assume the system
is attempting to determine the state of the "Business Goal Definition"

activity shown in Figure 28. The Session Manager, through the

Framework Processing Functionality Framework Processor Design

63

Framework Manager, would query the constraint base with the following
form:

(QUERY (DONE "Business Goal Definition"))

This form, when evaluated by the Constraint Propagator, would determine
whether the relation (DONE _Business Goal Definition") is considered to be

true or false. If the result is true, then the activity is completed; otherwise,

the activity is in progress or has not started, depending on the state of the

activities preceding "Business Goal Definition."

With the results of these operations, the status displays can be generated

and presented to the user. However, the construction of these status

displays could require a considerable amount of processing time. For this

reason, it may be beneficial to generate the status display for a process

description only when the user attempts to access that description. Also,

since the process descriptions can have many levels (through process

decomposition), when an activity is found for which the user has no

authority to view, there is no need to generate the status displays for the

decomposition of that activity. A decision on exactly how these displays will

be generated will be made after experimentation with the efficiency of the

access authorization and status querying procedures.

4.6.2 Project Managers

The second class of users of the Framework Processor are the project

managers. These users are unique in that they can fill two functions while

interacting with the Framework Process. First, the project manager can be

serving as a normal user as in the previous section, but filling the role of

project manager. In this role, the project manager requires no new

capabilities. However, it is in the second function of project instantiation

and administration that additional capabilities are required. The

instantiation process performs system initializations required to prepare

the Framework Processor for the development of the project and the

administration involves both monitoring and managing of the system

resources used to represent the project instantiation. As a result, the

project manager will have the ability to perform more powerful, yet

potentially more dangerous, operations.

To begin with, the Session Manager must provide functionality by which
the project manager can actually instantiate a new project. Besides

providing the project manager with the ability to name the project,
functionality for assigning team members to the project is required.

Additionally, minor modifications to the framework can be established for

this project. The extent of these modifications, at present, is to allow the
project manager to select a subset of the allowable methods and tools

defined as part of the framework. Once these modifications are completed,

the project can be instantiated and development can begin.

Framework Processor Design Framework Processing Functionality

64

At certain times after instantiation, it may become necessary to modify the

instantiated project. For example, assume that a project manager
established that Task A of a specific project had to be signed off by User

John-Doe. However, since the instantiation of that project, but before the

completion of Task A, User John-Doe resigns and leaves the company. The

project manager must have the ability to modify the project information.
The John-Doe example would require that the project manager be able to

modify the completion criteria for Task A. This is easily accomplished as
the Constraint Propagator supports the retraction of assertions. To correct

the situation created by John-Doe's resignation, only the following
statements need to be evaluated to remove John-Doe and assign the sign-off

responsibility to Jane-Smith.

(RETRACT (-> (USER-SIGN-OFF John-Doe)

(DONE Task-A)))

(ASSERt (-> (USER-SIGN-OFZ Jane-Smith)

(DONE Task-A)))

While the Constraint Propagator can perform these modifications, the

Session Manager provides the user interface for making these
modifications.

4.6.3 Framework Administrators

Perhaps the least common, but potentially most important, user of the
Framework Processor is the framework administrator. This user is

responsible for the installation of a specialized framework at a particular

site. It is during this installation process that the framework will undergo

the validation procedures described in Section 4.2. In this situation, the

Session Manager interacts with the Validator, through the Framework

Manager, to detect and correct any inconsistencies in the framework
definition.

Framework Processing Functionality Framework Processor Design

65

5 Status and Future Directions

While effort is being expended to make the Framework Processor an entity
independent of any specific integration platform. However, the Framework
Processor is evolving as part of the overall FPP. The purpose of this section
is to describe how the Framework Processor relates to the other components

of the FPP architecture, identify the subset of the FPP requirements
addressed by the Framework Processor, and identify areas where future

work concerning the Framework could be directed.

5.1 FYamework Processor and the FPP

While the Framework Processor is being designed to be independent of any
specific software development environment, the Framework Processor is
being included in an integration platform being developed as part of the
FPP effort. Figure 29 shows the current architecture of the Framework
Programmable Platform. The diagram represents the functional
architecture where each box in the diagram represents a functional unit
and the links between the boxes represent communication between those
functional units. It should be noted that this architecture is a derivative of

the Design Knowledge Management System platform architecture that
KBSI is currently developing for the Air Force [DKMS 90]. The approach in
the FPP project has been to leverage off of the DKMS effort by first adopting
the integration strategy of the DKMS and then layering the framework
programmability on top. A discussion of this architecture is required to set
the context for how the Framework Processor fits in with other components
of the FPP. The remainder of this section will be dedicated to this
discussion.

The FPP Session and Application represent the external interfaces to the
FPP. The FPP Session serves as the users direct link to the FPP

environment while the Application component represents the interface
through which applications would access FPP functionality. These two
components would provide user and application interfaces to the
Integration Mechanism, the Data Object Manager, and the Facilitator.

The Integration Mechanism is responsible for monitoring and controlling
the generation and execution of integration service plans. The idea behind
the services approach is based on the view that computer tools and utilities
provide services to users. The Integration Mechanism provides the means
for defining the services provided by tools and support for the automatic
execution of those services. See [FPP 91] for a more detailed discussion of

the integration services concept.

Framework Processor Design Status and Future Directions

66

i!iiiiiiiiiiiiiiiiii!iiiiiiiiiiiiiiiiiiilFramework Processoriiiiiiii_i_:iiiiiiiii',i_,ili_,iii',i:,iiiii'_i_iiiiiii_iiii',iii
_iiiiiiiiii_iiiiiiiiiiiiii_ii_iiiiiiiiiiiiiiiii_iii_i_!iiiiii_iiiiiiiiiiii!ii__i_iiii!!_iii_ii_iiiiiiii!iiiiiii_iii_iii_iiiiii!!!___iiiiiiiiiii!iiiiiiii!iii!iiiiii!iiiiiiiii!!_i__

\\ // ',..

/ X
I I I

/

To other
network

managers

Figure 29. FPPArchitecture

The Data Object Manager (DOM) is responsible for the management of life

cycle data artifacts. In managing life cycle artifacts, the DOM will provide
functionality for registering data artifacts in the repository and to maintain

access control over the artifacts. The DOM will also include versioning and

configuration management functionality and will be used to manage
system resource artifacts. The need to do this stems from the fact that the

FPP operates in a distributed environment. The namespace for the DOM,

as a result, will be distributed across all nodes of the platform. To take

advantage of this single repository and eliminate the need to store system

resource data on every machine, the DOM will manage these artifacts.

The Facilitator serves as a dispatcher of messages between higher level

components (DOM and Integration Mechanism) and the lower level

components (Data Managers and Network Transaction Manager). This

separation between higher and lower level components is required since the

Data Managers and Network Transaction Managers will be more machine

dependent than the more portable DOM and Integration Mechanism. The
Facilitator will provide a common interface between these two levels so that

the impact of changes in one level will be reduced, if not eliminated, in the
other level.

Status and Future Directions Framework Processor Design

- 67

The distributed nature of the FPP also makes the Facilitator necessary.

When accessing data, whether that data resides on the local machine or on

a remote machine should be transparent to the DOM. To hide the location

of the data from the DOM requires an intermediate party to parse the data

id and route the data query to either the appropriate machine (through the

Network Transaction Manager) or the appropriate data manager on the
local machine.

The Facilitator also serves as the interface between the FPP and

File�Database Managers running on the machine. This architecture

allows the host file system and different database managers to be used for

FPP data storage. The location of the data will be encapsulated in the data

ID. The Facilitator will extract the location and formulate a query based on

the query structure of the database manager. The query will then be passed

to the appropriate manager where the data will be collected and returned to
the Facilitator.

The Network Transaction Manager is responsible for sending and
receiving network operations for the local machine. The operations might

include data queries or updates to database managers running on other

machines, request for service execution on remote machines, or simple

network file transfer operations. The gaol of the NTM is to provide a

common networking interface between different FPP nodes that provides a

higher level of abstraction than the many existing networking protocols.

The Knowledge, Information and Data Stores will store the data artifacts

being maintained and controlled by the FPP. These stores will not only
contain the data artifacts themselves but will also include data and

knowledge necessary to manage those artifacts. The management

information will include access control information, audit trail

information, configuration and version control information, as well as
dependency relationship information. Rules and constraints for the

manipulation and management of these data artifacts will be established by
the defined framework.

The System Resources Definition repository will contain information

required by the FPP to operate. This would include knowledge about tools,

applications, services, hosts, and database servers operating under the FPP
as well as users of the FPP. Additionally, information extracted from the

framework and used by the Framework Processor would be stored in these
resource definitions.

The Framework Processor will mainly interact with the higher level

components of the FPP (FPP Session, Application, DOM, and Integration

Mechanism). Lower level functionality will be accessed by the Framework

Processor through the normal interfaces defined as part of the FPP. As

was described in Section 2.2, cooperation between the Framework Processor

and the Integration Platform will be required to enforce the policies

Framework Processor Design Status and Future Directions

v

68

specified in the framework. So, instead of a Framework Processor

controlling the operation of every component, each component will access
the information about the framework to ensure that the constraints of the

framework are not violated. In light of this role, the framework processor

would simply respond to queries from the various components about the

framework contents. In addition, the various components would send

messages to the Framework Processor to indicate the occurrence of events

during the evolution of active projects.

5.2 Requirements Matrix

With an understanding of the roles the various components of the FPP are

expected to play, it is possible to establish the requirements of the FPP that
have been addressed by the Framework Processor design. The matrices in

Figures 30 and 31 relate the requirements [FPP 90b] satisfied by the design
of the Framework Processor to the actual component of the Framework

Processor that satisfies the requirement. In many cases, a requirement is

satisfied through a combination of several Framework Processor

components.

It should be noted that the occurrence of a requirement in the requirements

matrix does not imply that the requirement is completely satisfied by the

capabilities of the Framework Processor. As the previous section showed,

the FPP is a complex system with many functional components. It is only

through the development of all these components that the FPP

requirements will be met. The purpose of the requirements matrix is to
identify those areas of the FPP requirements that this component, the

Framework Processor, will address.

5.3 Open Issues

While the Framework Processor addresses a considerable number of the

requirements specified for the FPP, certain areas could still be addressed by

the components of the Framework Processor. A brief discussion of these

topics is presented below.

Versioning and Configuration Management

Currently, the DEFARTIFACT form of the Definition Component of the
framework does not address versions and configurations. As the DOM is

expected to support the capture and management of versions and

configurations of artifacts, it would be useful to capture an organization's

policies on versions and configuration management in the framework
definition and to use that information in the development process control.

Status and Future Directions Framework Processor Design

- 69

2.1.1

2.1.2

2.1.3

2.1.4

2.1.5

2.1.6

2.1.7

2.1.8

2.1.9

2.1.10

2.2

2.5.1

2.5.2

2.6.1

2.6.2

2.9.1

2.9.2

3.1.1

3.3.1.2.2

3.3.1.4.3

3.3.1.4.4

3.4.1.1

3.4.1.2.1

3.4.1.2.2

3.4.1.2.3

3.4.1.2.4

3.4.1.2.5

3.4.1.5.1

3.4.1.6.1

3.4.1.6.2

3.4.2.1

Session

Manager

FW
Manager Validator

Constraint

Propagator

Fact Base

Manager

_gure30._mework_rRequiremen_Matrix

Framework Processor Design Status and Future Directions

7O

3.4.2.2

3.7.2.1

3.8.3

4.1.1

4.1.5

4.3.1.1.1

4.3.1.1.2

4.3.1.2.1

4.3.1.2.2

4.3.2.5

4.6.1

4.7.4

4.7.6

4.7.7

4.11.1.1

4.11.1.2

4.11.1.3

5.1.5

5.1.6

5.2

Session

Manager

FW Constraint Fact Base
Manager Validator Propagator Manager

Figure 31. Framework Processor Requirements Matrix (continued)

Artifact Types

Another issue that could be addressed by the Framework Processor is the
definition of artifact types. The ability to do this would cut down on the
amount of definitional information required by allowing information to be

captured in the type definition and then to attach that information to
artifacts as the artifacts are defined.

User Groups

With User Groups, the idea would be to arrange user roles defined in the
framework into groups of related_roles. It would then be possible to define
access constraints on user groups instead of on every user role that is a part
of that group. Again, this capability would simplify the process of
framework definition.

Status and Future Directions Framework Processor Design

w

71

Constraint Specification Language

The representation of constraints in the framework definition is currently

specified in the internal format to be used by the Constraint Propagator

component of the Framework Processor. The issue of a Constraint

Specification Language would involve defining a language that would be

more accessible to the framework designer and defining the rules for

translating those constraints into their internal format. An initial
candidate for this purpose is the Information Systems Constraint

Language (ISyCL).

Internal IDEF3 Representation

As was mentioned in Section 3.2.1, a textual representation for IDEF3

process descriptions was not defined as part of the Framework Processor

design. The point of defining this representation would be to allow the

Framework Processor to interface with many different IDEF3 tools. It is

expected that an initial representation for IDEF3 will result from the IDEF3

ISyCL Metalanguage task being performed as part of the Information

Integration for Concurrent Engineering project at KBSI and this

representation will be used by the Framework Processor.

5.4 Futm'e Directions

As the initial designs of the Integration Mechanism [FPP 91] and

Framework Processor have been completed, the next portion of the FPP

project will focus on the design of the remaining components of the FPP

Architecture (see Section 5.1). A particularly important component of that

architecture will be the Data Object Manager. It is expected that the

operation of that component will have the most impact on the Framework

Processor as well as the Integration Mechanism.

During the design of these additional components, the Framework

Processor design will be reevaluated and examined for required additions

and modifications. This examination will allow us to attempt to address

the issues presented in the previous section and to also take advantaged of

the functionality defined as part of the design of the remaining FPP

components.

Status and Future DirectionsFramework Processor Design

73

6 Bibliography

[Aho86] Aho, A.V., Sethi, R., and Ullman, J.D., Compilers:

Principles, Techniques, and Tools, Addison-Wesley, Reading, MA,
1986.

[DKMS90] A Design Knowledge Management System (DKMS), SBIR

Phase I Final Report, April 1990, Knowledge Based Systems,

Incorporated. Contract F41622-89-C-1018, AFHRL, WPAFB.

[FPP90a] Framework Programmable Platform for the Advanced

Software Development Workstation: Concept of Operations

Document. Report to NASA and University of Houston-Clear Lake by

Knowledge Based Systems, Inc under subcontract SE.37, NCC9-16.

September, 1990.

[FPP90b] Framework Programmable Platform for the Advanced

Software Development Workstation: Requirements Document.

Report to NASA and University of Houston-Clear Lake by Knowledge
Based Systems, Inc. under subcontract SE.37, NCC9-16. November,
1990.

[FPP91] Framework Programmable Platform for the Advanced
Software Development Workstation: Integration Mechanism Design

Document. Report to NASA and University of Houston-Clear Lake by
Knowledge Based Systems, Inc. under subcontract 077, NCC9-16.

June, 1991.

[Mayer90] Mayer, R., Menzel, C., and Mayer, P., IDEF3 Technical

Report, Knowledge Based Systems Laboratory, Texas A&M
University, March 8, 1990.

[Menzel 91] Menzel, C., Mayer, R., and Edwards, D., IDEF3 Formalization

Report, Knowledge Based Systems Laboratory, Texas A&M

University, March 6, 1991.

[Zachman 86] Zachman J.A., A Framework for Information Systems

Architecture, IBM Los Angeles Scientific Center, G320-2785, March
1986.

pi'_CED:i'_G PAGE BLANK NOT FILMED

Framework Processor Design Bibliography

- 75

A Appendix A - Acronyms

ASDW

DOM

FP

FPP

NTM

SCF

SDF

Advanced Software Development Workstation

Data Object Manager

Framework Processor

Framework Programmable Platform

Network Transaction Manager

Situation Classification Framework

System Development Framework

Framework Processor Design Acronyms

77

B Appendix B - Framework Definition Grammar Specification

This appendix contains the complete lexical and grammar specification for

the forms that are part of the Definition Component and the Elaboration
Specification.

Lexical Conventions

This section describes the lexical conventions used in the definition of the

specifications. Where necessary a regular definition [Aho 86] has been

provided to explicitly and unambiguously express a lexical item. The
lexical conventions are:

1) A semicolon (';') starts a comment and the comment is terminated by
the end of the line.

2)

3)

4)

5)

6)

Spaces (' ') between tokens are optional. However, keywords must be
surrounded by spaces and newlines.

An identifier is made up of a letter followed by letters, digits, or

underscores. The regular definition form of an identifier is as follows:
letter ::= [a-zA-Z]

digit ::= [0-9]

identifier ::= letter (letter I digit i _)*

An integer is composed of optionally a plus or minus sign followed by at

least one digit. The integer regular definition is as follows:
digits ::= digit digit*

integer ::= (+] - I e) digits

A real number may be represented either in decimal notation or

scientific notation. Therefore, a real number is represented by the
following regular definition:

fraction ::=. digits ie

optional-exponent ::= ((E I e) (+] -] e) digits) 1 e

real ::= (+ i - I e) digits fraction optional-exponent

A string is delimited by double quotes C") containing any printable
ASCII character.

pR,E.CEDtNG pAGe-. BLAN_ NO'_ FLLMED

Framework Processor Design

..12.,==
Framework Definition Grammar

78

Grnrnm3r Conventions

Shown below are the conventions for the grammar of the specifications.
The grammar is specified by listing its productions, with the production for
the start symbol listed first.

1) non-terminal - Non-terminals symbols are represented in italics.

2) terminal - Terminal symbols are represented in bold. They represent
keywords in the language. The parenthesis contained in the grammar
are part of the specification. They are considered to be terminal

symbols. However they will not be in bold.

3) An expression is made up of terminals, non-terminals, and other
complex expression built from rules 4 through 7.

4) { expression

represents a
alternatives.

I expression I expression } The vertical bar ('1')
selection of one and only one item from the set of

5) {expression }? - A question mark ('?') indicates that the expression can
occur zero or one times.

6) {expression }+ - A plus sign ('+') indicates that the expression can occur
one or more times.

7) {expression }* - An asterisk ('*') indicates that the expression can occur
zero or more times.

framework-definition ::= definitional-forms
elaboration-forms

definitional-forms ..-"- {declarations}*

declarations :: = defartifact l
defuserole l
defproject l
defuser l
deftool l
defmethod l
defrelation

defartifact ::= (_ :name identifier
:tools tool-list
:states states-list

:method method-list)

defuserole ::= (dehtserole :name identifier)

Framework Definition Grammar Framework Processor Design

- 79

defproject ::= (defproject :name identifier
:access access-list)

defuser ::= (defuser :name identifier

:password string

:projects project-list)

deftool ":= (deftool :name identifier

:version string

:formats format-list
:methods method-list)

defmethod ::= (defmethod :name identifier)

defrelation ::= (defrelation :name identifier)

format-list ::= ({format-name }+)

format-name ::= identifier

project-list ::= ({tool-name }+)

project-name ::= identifier

elaboration-form ::= { elaboration }*

elaboration ..-"- facts
constraints

facts ":= { acc-role }+
{ acc-art }*

acc-role ::=

acc-art ":=

access-list "'=

(access-role :all :all) I

(access-role role-type :all) I

(access-role role-type :except access-list) I

(access-role role-type :only access-list)

(access-artifact artifact-name
:tool tool-list
:method method-list

:state state-name)

({ user-name I role-type }+)

role-type ::= identifier

user-name "'= identifier

Framework Processor Design Framework Definition Grammar

8O

artifact-name::=

tool-list ::=

tool-name ::=

method-list ..-"-

method-name ::=

state- name "'-.-

constraints ..-"-

identifier

({ tool-name }+)

identifier

({method-name }+)

identifier

identifier

{ completion-criteria I e }

{ selection-criteria }*

{ general-constraints }*

completion-criteria ":= constraint-expression

constraint-expression ..-"- (and { constraint-expression }+) I

(or { constraint-expression }+)]

(xor { constraint-expression }+) I

(not { constraint-expression }+)]
relation

selection-criteria ":= (-> constraint-expression selection-expression)

selection-expression ::= (select process-name) I

(and (select process-name)

{ (selectprocess-name) }+)]
(user-select number number

{ constraint-expression }*)

process-name ::= identifier

general-constraints ::= (-> constraint-expression constraint-expression)

relation "'= (relation-name { val }*)

val ..-'"- identifier

relation-name ::= identifier

Framework Definition Grammar Framework Processor Design

